具有替代折叠的蛋白质揭示了基于alphafold的蛋白质结构预测的盲点。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2025-02-01 DOI:10.1016/j.sbi.2024.102973
Devlina Chakravarty , Myeongsang Lee , Lauren L. Porter
{"title":"具有替代折叠的蛋白质揭示了基于alphafold的蛋白质结构预测的盲点。","authors":"Devlina Chakravarty ,&nbsp;Myeongsang Lee ,&nbsp;Lauren L. Porter","doi":"10.1016/j.sbi.2024.102973","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction. First, proteins that assume conformations distinct from their training-set homologs can be mispredicted. Second, AF overrelies on its training set to predict alternative conformations. Third, degeneracies in pairwise representations can lead to high-confidence predictions inconsistent with experiment. These weaknesses suggest approaches to predict alternative folds more reliably.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102973"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteins with alternative folds reveal blind spots in AlphaFold-based protein structure prediction\",\"authors\":\"Devlina Chakravarty ,&nbsp;Myeongsang Lee ,&nbsp;Lauren L. Porter\",\"doi\":\"10.1016/j.sbi.2024.102973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction. First, proteins that assume conformations distinct from their training-set homologs can be mispredicted. Second, AF overrelies on its training set to predict alternative conformations. Third, degeneracies in pairwise representations can lead to high-confidence predictions inconsistent with experiment. These weaknesses suggest approaches to predict alternative folds more reliably.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"90 \",\"pages\":\"Article 102973\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24002008\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24002008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能(AI)的进步已经改变了结构生物学,特别是蛋白质结构预测。虽然基于人工智能的方法,如AlphaFold (AF),经常以高精度和置信度预测蛋白质的单一构象,但对替代折叠的预测通常是不准确的、低置信度的,或者根本无法预测。在这里,我们回顾了三个盲点,替代构象揭示了基于af的蛋白质结构预测。首先,假设构象与其训练集同源物不同的蛋白质可能被错误预测。其次,AF过度依赖其训练集来预测备选构象。第三,两两表示的退化可能导致与实验不一致的高置信度预测。这些弱点提示了更可靠地预测可选折叠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteins with alternative folds reveal blind spots in AlphaFold-based protein structure prediction
In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction. First, proteins that assume conformations distinct from their training-set homologs can be mispredicted. Second, AF overrelies on its training set to predict alternative conformations. Third, degeneracies in pairwise representations can lead to high-confidence predictions inconsistent with experiment. These weaknesses suggest approaches to predict alternative folds more reliably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Foundation models of protein sequences: A brief overview Chromatin domains in the cell: Phase separation and condensation From part to whole: AI-driven progress in fragment-based drug discovery Combining cryo-electron microscopy (cryo-EM) with orthogonal solution state methods to define the molecular basis of the phosphoprotein phosphatase family regulation and substrate specificity Bias in, bias out – AlphaFold-Multimer and the structural complexity of protein interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1