{"title":"应用自适应轻量级深度学习(AppAdapt-LWDL)框架在乳制品加工中实现边缘智能","authors":"Rahul Umesh Mhapsekar;Lizy Abraham;Steven Davy;Indrakshi Dey","doi":"10.1109/TMC.2024.3475634","DOIUrl":null,"url":null,"abstract":"The dairy industry is experiencing a surge in data from Edge devices, using spectroscopic techniques for milk quality assessment. Milk spectral data can help understand the species of milk producer and detect inter-species adulteration. Transmitting raw milk spectral data to the cloud for processing faces challenges due to limited network resources such as bandwidth, computational memory, and energy availability. Edge processing offers a solution by training data closer to the source, enhancing efficiency and real-time analysis by providing reduced latency, improved accuracy, resource-aware computation, and real-time customization. However, traditional Deep Learning (DL) methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) struggle on resource-constrained Edge devices due to complexity. To address this, we propose an Edge-Centric Application-Adaptive Light-Weight DL approach (AppAdapt-LWDL) for milk species identification and adulteration detection. Our method optimizes DL models via double model optimization, involving low-magnitude pruning and post-training quantization. Our novel application-adaptive algorithm balances speed and accuracy by determining the pruning ratio automatically for the specific application. The chosen model is then quantized for smaller databases, ideal for embedded devices. The AppAdapt-LWDL framework significantly accelerates training, speeds up inferencing, enhances energy efficiency, and maintains accuracy based on application needs.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1105-1119"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Adaptive Light-Weight Deep Learning (AppAdapt-LWDL) Framework for Enabling Edge Intelligence in Dairy Processing\",\"authors\":\"Rahul Umesh Mhapsekar;Lizy Abraham;Steven Davy;Indrakshi Dey\",\"doi\":\"10.1109/TMC.2024.3475634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dairy industry is experiencing a surge in data from Edge devices, using spectroscopic techniques for milk quality assessment. Milk spectral data can help understand the species of milk producer and detect inter-species adulteration. Transmitting raw milk spectral data to the cloud for processing faces challenges due to limited network resources such as bandwidth, computational memory, and energy availability. Edge processing offers a solution by training data closer to the source, enhancing efficiency and real-time analysis by providing reduced latency, improved accuracy, resource-aware computation, and real-time customization. However, traditional Deep Learning (DL) methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) struggle on resource-constrained Edge devices due to complexity. To address this, we propose an Edge-Centric Application-Adaptive Light-Weight DL approach (AppAdapt-LWDL) for milk species identification and adulteration detection. Our method optimizes DL models via double model optimization, involving low-magnitude pruning and post-training quantization. Our novel application-adaptive algorithm balances speed and accuracy by determining the pruning ratio automatically for the specific application. The chosen model is then quantized for smaller databases, ideal for embedded devices. The AppAdapt-LWDL framework significantly accelerates training, speeds up inferencing, enhances energy efficiency, and maintains accuracy based on application needs.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 2\",\"pages\":\"1105-1119\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706815/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706815/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Application Adaptive Light-Weight Deep Learning (AppAdapt-LWDL) Framework for Enabling Edge Intelligence in Dairy Processing
The dairy industry is experiencing a surge in data from Edge devices, using spectroscopic techniques for milk quality assessment. Milk spectral data can help understand the species of milk producer and detect inter-species adulteration. Transmitting raw milk spectral data to the cloud for processing faces challenges due to limited network resources such as bandwidth, computational memory, and energy availability. Edge processing offers a solution by training data closer to the source, enhancing efficiency and real-time analysis by providing reduced latency, improved accuracy, resource-aware computation, and real-time customization. However, traditional Deep Learning (DL) methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) struggle on resource-constrained Edge devices due to complexity. To address this, we propose an Edge-Centric Application-Adaptive Light-Weight DL approach (AppAdapt-LWDL) for milk species identification and adulteration detection. Our method optimizes DL models via double model optimization, involving low-magnitude pruning and post-training quantization. Our novel application-adaptive algorithm balances speed and accuracy by determining the pruning ratio automatically for the specific application. The chosen model is then quantized for smaller databases, ideal for embedded devices. The AppAdapt-LWDL framework significantly accelerates training, speeds up inferencing, enhances energy efficiency, and maintains accuracy based on application needs.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.