Yang Xu;Shanshan Zhang;Chen Lyu;Jia Liu;Tarik Taleb;Shiratori Norio
{"title":"基于Stackelberg博弈的分布式车辆共享系统的三面稳定匹配","authors":"Yang Xu;Shanshan Zhang;Chen Lyu;Jia Liu;Tarik Taleb;Shiratori Norio","doi":"10.1109/TMC.2024.3475481","DOIUrl":null,"url":null,"abstract":"Distributed Vehicle Sharing System (DVSS) leverages emerging technologies such as blockchain to create a secure, transparent, and efficient platform for sharing vehicles. In such a system, both efficient matching of users with available vehicles and optimal pricing mechanisms play crucial roles in maximizing system revenue. However, most existing schemes utilize user-to-vehicle (two-sided) matching and pricing, which are unrealistic for DVSS due to the lack of participation of service providers. To address this issue, we propose in this paper a novel Three-sided stable Matching with an optimal Pricing (TRIMP) scheme. First, to achieve maximum utilities for all three parties simultaneously, we formulate the optimal policy and pricing problem as a three-stage Stackelberg game and derive its equilibrium points accordingly. Second, relying on these solutions from the Stackelberg game, we construct a three-sided cyclic matching for DVSS. Third, as the existence of such a matching is NP-complete, we design a specific vehicle sharing algorithm to realize stable matching. Extensive experiments demonstrate the effectiveness of our TRIMP scheme, which optimizes the matching process and ensures efficient resource allocation, leading to a more stable and well-functioning decentralized vehicle sharing ecosystem.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1132-1148"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRIMP: Three-Sided Stable Matching for Distributed Vehicle Sharing System Using Stackelberg Game\",\"authors\":\"Yang Xu;Shanshan Zhang;Chen Lyu;Jia Liu;Tarik Taleb;Shiratori Norio\",\"doi\":\"10.1109/TMC.2024.3475481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Vehicle Sharing System (DVSS) leverages emerging technologies such as blockchain to create a secure, transparent, and efficient platform for sharing vehicles. In such a system, both efficient matching of users with available vehicles and optimal pricing mechanisms play crucial roles in maximizing system revenue. However, most existing schemes utilize user-to-vehicle (two-sided) matching and pricing, which are unrealistic for DVSS due to the lack of participation of service providers. To address this issue, we propose in this paper a novel Three-sided stable Matching with an optimal Pricing (TRIMP) scheme. First, to achieve maximum utilities for all three parties simultaneously, we formulate the optimal policy and pricing problem as a three-stage Stackelberg game and derive its equilibrium points accordingly. Second, relying on these solutions from the Stackelberg game, we construct a three-sided cyclic matching for DVSS. Third, as the existence of such a matching is NP-complete, we design a specific vehicle sharing algorithm to realize stable matching. Extensive experiments demonstrate the effectiveness of our TRIMP scheme, which optimizes the matching process and ensures efficient resource allocation, leading to a more stable and well-functioning decentralized vehicle sharing ecosystem.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 2\",\"pages\":\"1132-1148\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706714/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706714/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
TRIMP: Three-Sided Stable Matching for Distributed Vehicle Sharing System Using Stackelberg Game
Distributed Vehicle Sharing System (DVSS) leverages emerging technologies such as blockchain to create a secure, transparent, and efficient platform for sharing vehicles. In such a system, both efficient matching of users with available vehicles and optimal pricing mechanisms play crucial roles in maximizing system revenue. However, most existing schemes utilize user-to-vehicle (two-sided) matching and pricing, which are unrealistic for DVSS due to the lack of participation of service providers. To address this issue, we propose in this paper a novel Three-sided stable Matching with an optimal Pricing (TRIMP) scheme. First, to achieve maximum utilities for all three parties simultaneously, we formulate the optimal policy and pricing problem as a three-stage Stackelberg game and derive its equilibrium points accordingly. Second, relying on these solutions from the Stackelberg game, we construct a three-sided cyclic matching for DVSS. Third, as the existence of such a matching is NP-complete, we design a specific vehicle sharing algorithm to realize stable matching. Extensive experiments demonstrate the effectiveness of our TRIMP scheme, which optimizes the matching process and ensures efficient resource allocation, leading to a more stable and well-functioning decentralized vehicle sharing ecosystem.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.