FedSiam-DA:通过Siamese网络对非iid数据进行双聚合联邦学习

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-10-03 DOI:10.1109/TMC.2024.3472898
Xin Wang;Yanhan Wang;Ming Yang;Feng Li;Xiaoming Wu;Lisheng Fan;Shibo He
{"title":"FedSiam-DA:通过Siamese网络对非iid数据进行双聚合联邦学习","authors":"Xin Wang;Yanhan Wang;Ming Yang;Feng Li;Xiaoming Wu;Lisheng Fan;Shibo He","doi":"10.1109/TMC.2024.3472898","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is an effective mobile edge computing framework that enables multiple participants to collaboratively train intelligent models, without requiring large amounts of data transmission while protecting privacy. However, FL encounters challenges due to non-independent and identically distributed (non-IID) data from different participants. The existing methods, whether focusing on local training or global aggregation, often suffer from insufficient unilateral optimization. Achieving effective local-global collaborative optimization, particularly in the absence of additional reference models or datasets, is both crucial and challenging. To address this, we propose a novel approach: \n<bold>D</b>\nual-\n<bold>A</b>\nggregated \n<bold>Fed</b>\nerated learning based on a triple \n<bold>Siam</b>\nese network (\n<bold>FedSiam-DA</b>\n). This method enhances the FL algorithm on both client and server sides. On the client side, we establish a triple Siamese network incorporating a stop-gradient scheme, which leverages a contrastive learning strategy to control the update directions of local models. On the server side, we introduce a dual aggregation mechanism with dynamic weights for local updates, improving the global model’s ability to assimilate personalized knowledge from local models. Extensive experiments on multiple benchmark datasets demonstrate that FedSiam-DA significantly improves model performance under non-IID data conditions compared to existing methods.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"985-998"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedSiam-DA: Dual-Aggregated Federated Learning via Siamese Network for Non-IID Data\",\"authors\":\"Xin Wang;Yanhan Wang;Ming Yang;Feng Li;Xiaoming Wu;Lisheng Fan;Shibo He\",\"doi\":\"10.1109/TMC.2024.3472898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is an effective mobile edge computing framework that enables multiple participants to collaboratively train intelligent models, without requiring large amounts of data transmission while protecting privacy. However, FL encounters challenges due to non-independent and identically distributed (non-IID) data from different participants. The existing methods, whether focusing on local training or global aggregation, often suffer from insufficient unilateral optimization. Achieving effective local-global collaborative optimization, particularly in the absence of additional reference models or datasets, is both crucial and challenging. To address this, we propose a novel approach: \\n<bold>D</b>\\nual-\\n<bold>A</b>\\nggregated \\n<bold>Fed</b>\\nerated learning based on a triple \\n<bold>Siam</b>\\nese network (\\n<bold>FedSiam-DA</b>\\n). This method enhances the FL algorithm on both client and server sides. On the client side, we establish a triple Siamese network incorporating a stop-gradient scheme, which leverages a contrastive learning strategy to control the update directions of local models. On the server side, we introduce a dual aggregation mechanism with dynamic weights for local updates, improving the global model’s ability to assimilate personalized knowledge from local models. Extensive experiments on multiple benchmark datasets demonstrate that FedSiam-DA significantly improves model performance under non-IID data conditions compared to existing methods.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 2\",\"pages\":\"985-998\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704054/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704054/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)是一种有效的移动边缘计算框架,它使多个参与者能够协同训练智能模型,而不需要大量数据传输,同时保护隐私。然而,由于来自不同参与者的非独立和同分布(non-IID)数据,FL遇到了挑战。现有的方法,无论是关注局部训练还是全局聚合,往往存在单边优化不足的问题。实现有效的局部-全局协作优化,特别是在缺乏额外参考模型或数据集的情况下,既关键又具有挑战性。为了解决这个问题,我们提出了一种新的方法:基于三重暹罗网络的双聚合联邦学习(federdsiam - da)。该方法在客户端和服务器端对FL算法进行了改进。在客户端,我们建立了一个包含停止梯度方案的三重暹罗网络,该网络利用对比学习策略来控制局部模型的更新方向。在服务器端,我们为本地更新引入了具有动态权重的双重聚合机制,提高了全局模型从本地模型吸收个性化知识的能力。在多个基准数据集上的大量实验表明,与现有方法相比,FedSiam-DA在非iid数据条件下显著提高了模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedSiam-DA: Dual-Aggregated Federated Learning via Siamese Network for Non-IID Data
Federated learning (FL) is an effective mobile edge computing framework that enables multiple participants to collaboratively train intelligent models, without requiring large amounts of data transmission while protecting privacy. However, FL encounters challenges due to non-independent and identically distributed (non-IID) data from different participants. The existing methods, whether focusing on local training or global aggregation, often suffer from insufficient unilateral optimization. Achieving effective local-global collaborative optimization, particularly in the absence of additional reference models or datasets, is both crucial and challenging. To address this, we propose a novel approach: D ual- A ggregated Fed erated learning based on a triple Siam ese network ( FedSiam-DA ). This method enhances the FL algorithm on both client and server sides. On the client side, we establish a triple Siamese network incorporating a stop-gradient scheme, which leverages a contrastive learning strategy to control the update directions of local models. On the server side, we introduce a dual aggregation mechanism with dynamic weights for local updates, improving the global model’s ability to assimilate personalized knowledge from local models. Extensive experiments on multiple benchmark datasets demonstrate that FedSiam-DA significantly improves model performance under non-IID data conditions compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1