Maochao Lv, Jie Yang, Yanhui Zhang, Jianli Wang, Yi Zhou
{"title":"激光周期加热法测量空气中聚合物薄膜的面内热扩散系数","authors":"Maochao Lv, Jie Yang, Yanhui Zhang, Jianli Wang, Yi Zhou","doi":"10.1007/s10765-024-03491-4","DOIUrl":null,"url":null,"abstract":"<div><p>The laser periodic heating method is widely used to measure the thermal diffusivity of various thin films. In this technique, surface temperature responses are monitored using either an infrared (IR) camera or a thermocouple (TC) detector. Under air pressure, the impact of air heat loss on these two measurement methods warrants further examination. In this study, we measured the in-plane thermal diffusivity of a polyethylene terephthalate (PET) film under air pressure using both a non-research-grade IR camera and a microscale TC. Results indicate that air heat loss significantly influenced the TC measurements, yielding an abnormally high thermal diffusivity. Comparatively, the thermal diffusivity measured by the IR camera decreased slightly as modulation frequency increased from 0.1 Hz to 1 Hz. When the thermal diffusion length was approximately three times the film thickness, the diffusivity values from the IR camera closely matched those obtained under vacuum, indicating that the non-contact IR method can effectively suppress the impact of air heat loss.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of In-Plane Thermal Diffusivity of Polymer Films in Air Using Laser Periodic Heating Method\",\"authors\":\"Maochao Lv, Jie Yang, Yanhui Zhang, Jianli Wang, Yi Zhou\",\"doi\":\"10.1007/s10765-024-03491-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The laser periodic heating method is widely used to measure the thermal diffusivity of various thin films. In this technique, surface temperature responses are monitored using either an infrared (IR) camera or a thermocouple (TC) detector. Under air pressure, the impact of air heat loss on these two measurement methods warrants further examination. In this study, we measured the in-plane thermal diffusivity of a polyethylene terephthalate (PET) film under air pressure using both a non-research-grade IR camera and a microscale TC. Results indicate that air heat loss significantly influenced the TC measurements, yielding an abnormally high thermal diffusivity. Comparatively, the thermal diffusivity measured by the IR camera decreased slightly as modulation frequency increased from 0.1 Hz to 1 Hz. When the thermal diffusion length was approximately three times the film thickness, the diffusivity values from the IR camera closely matched those obtained under vacuum, indicating that the non-contact IR method can effectively suppress the impact of air heat loss.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03491-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03491-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Measurement of In-Plane Thermal Diffusivity of Polymer Films in Air Using Laser Periodic Heating Method
The laser periodic heating method is widely used to measure the thermal diffusivity of various thin films. In this technique, surface temperature responses are monitored using either an infrared (IR) camera or a thermocouple (TC) detector. Under air pressure, the impact of air heat loss on these two measurement methods warrants further examination. In this study, we measured the in-plane thermal diffusivity of a polyethylene terephthalate (PET) film under air pressure using both a non-research-grade IR camera and a microscale TC. Results indicate that air heat loss significantly influenced the TC measurements, yielding an abnormally high thermal diffusivity. Comparatively, the thermal diffusivity measured by the IR camera decreased slightly as modulation frequency increased from 0.1 Hz to 1 Hz. When the thermal diffusion length was approximately three times the film thickness, the diffusivity values from the IR camera closely matched those obtained under vacuum, indicating that the non-contact IR method can effectively suppress the impact of air heat loss.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.