结构设计和制造与布局优化和机器人长丝缠绕混凝土钢筋

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-08 DOI:10.1016/j.autcon.2024.105952
Robin Oval, John Orr, Paul Shepherd
{"title":"结构设计和制造与布局优化和机器人长丝缠绕混凝土钢筋","authors":"Robin Oval, John Orr, Paul Shepherd","doi":"10.1016/j.autcon.2024.105952","DOIUrl":null,"url":null,"abstract":"Reinforced concrete is a major contributor to the environmental impact of the construction industry, due not only to its cement content, but also its steel tensile reinforcement, estimated to represent around 40% of the material embodied carbon. Reinforcement has a significant contribution because of construction rationalisation, resulting in regular cages of steel bars, despite the availability of structural-optimisation algorithms and additive-manufacturing technologies. This paper fuses computational design and digital fabrication, to optimise the reinforcement layout of concrete structures, by designing with constrained layout optimisation of strut-and-tie models where the ties are produced with robotic filament winding. The methodology is presented, implemented in open-source code, and illustrated on beam and plate reinforcement applications. The numerical studies yield a discussion about parameter selection and constraint influence on material and construction efficiency trade-offs. Small-scale physical prototypes up to 50 cm <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mo>×</mml:mo></mml:math> 50 cm provide a proof-of-concept.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"41 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural design and fabrication of concrete reinforcement with layout optimisation and robotic filament winding\",\"authors\":\"Robin Oval, John Orr, Paul Shepherd\",\"doi\":\"10.1016/j.autcon.2024.105952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced concrete is a major contributor to the environmental impact of the construction industry, due not only to its cement content, but also its steel tensile reinforcement, estimated to represent around 40% of the material embodied carbon. Reinforcement has a significant contribution because of construction rationalisation, resulting in regular cages of steel bars, despite the availability of structural-optimisation algorithms and additive-manufacturing technologies. This paper fuses computational design and digital fabrication, to optimise the reinforcement layout of concrete structures, by designing with constrained layout optimisation of strut-and-tie models where the ties are produced with robotic filament winding. The methodology is presented, implemented in open-source code, and illustrated on beam and plate reinforcement applications. The numerical studies yield a discussion about parameter selection and constraint influence on material and construction efficiency trade-offs. Small-scale physical prototypes up to 50 cm <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mo>×</mml:mo></mml:math> 50 cm provide a proof-of-concept.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105952\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105952","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钢筋混凝土是建筑行业对环境影响的主要贡献者,不仅是因为它的水泥含量,还因为它的钢筋拉伸加固,估计占材料隐含碳的40%左右。尽管有结构优化算法和增材制造技术,但由于结构合理化,钢筋形成了规则的钢筋笼,因此加固起到了重要作用。本文将计算设计和数字制造相结合,通过约束布局优化设计钢筋混凝土结构模型,其中钢筋是由机器人丝缠绕生产的。本文给出了该方法,并在开源代码中实现,并在梁和板加固应用中进行了说明。数值研究讨论了参数选择和约束对材料和施工效率权衡的影响。高达50厘米× 50厘米的小规模物理原型提供了概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural design and fabrication of concrete reinforcement with layout optimisation and robotic filament winding
Reinforced concrete is a major contributor to the environmental impact of the construction industry, due not only to its cement content, but also its steel tensile reinforcement, estimated to represent around 40% of the material embodied carbon. Reinforcement has a significant contribution because of construction rationalisation, resulting in regular cages of steel bars, despite the availability of structural-optimisation algorithms and additive-manufacturing technologies. This paper fuses computational design and digital fabrication, to optimise the reinforcement layout of concrete structures, by designing with constrained layout optimisation of strut-and-tie models where the ties are produced with robotic filament winding. The methodology is presented, implemented in open-source code, and illustrated on beam and plate reinforcement applications. The numerical studies yield a discussion about parameter selection and constraint influence on material and construction efficiency trade-offs. Small-scale physical prototypes up to 50 cm × 50 cm provide a proof-of-concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1