瞬态火花血浆处理的l -半胱氨酸降低ccl4诱导的大鼠肝毒性

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-11-15 DOI:10.1007/s11090-024-10527-y
Masume Farhadi, Farshad Sohbatzadeh, Akbar Hajizadeh Moghaddam, Yasaman Firouzjaei
{"title":"瞬态火花血浆处理的l -半胱氨酸降低ccl4诱导的大鼠肝毒性","authors":"Masume Farhadi,&nbsp;Farshad Sohbatzadeh,&nbsp;Akbar Hajizadeh Moghaddam,&nbsp;Yasaman Firouzjaei","doi":"10.1007/s11090-024-10527-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cold plasmas have been considered an effective method in numerous scientific fields. One excellent target for plasma treatment is amino acids. Transient spark plasma discharge (TSP) is very useful in changing the chemical structures of biological systems due to its high electron density. TSP discharges as DC-driven self-pulsing discharges allow ionization and effective chemical processes to be performed easily. This type of plasma discharge consists of numerous streamers with a high electric field that can be transferred into short spark current pulses. In this study, we utilized a pin-to-ring TSP with a fixed voltage and frequency of ~ 5 kV and 220 Hz, respectively. The present study was conducted to estimate the synergetic effect of a TSP device and cysteine (Cys) in stopping hepatotoxicity. The interaction of Ar plasma with Cys solution was investigated by LCMS/MS, revealing that many new biochemical products with different molecular weights were produced under plasma treatment. Glutathione (GSH) level and DPPH scavenging activity were performed. Biochemical markers and histopathological analysis were also evaluated. Results revealed that by increased levels of GSH and anti-oxidant activity, PTC solution can preserve as opposed to injuries caused by CCl<sub>4</sub> injection to a greater extent than untreated Cys even at a low dose of amino acid. The ALP, ALT, and AST activity levels were closer to the normal level when PTC was received than Cys. After receiving PTC, more positive liver and kidney tissue changes were observed in the CCl<sub>4</sub> group. It also had a great impact on oxidative antioxidant parameters. Therefore, PTC as an effective drug has shown a positive effect in inhibiting hepatotoxicity because it contains various biomolecules under the influence of the plasma-produced reactive species.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"279 - 296"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats\",\"authors\":\"Masume Farhadi,&nbsp;Farshad Sohbatzadeh,&nbsp;Akbar Hajizadeh Moghaddam,&nbsp;Yasaman Firouzjaei\",\"doi\":\"10.1007/s11090-024-10527-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cold plasmas have been considered an effective method in numerous scientific fields. One excellent target for plasma treatment is amino acids. Transient spark plasma discharge (TSP) is very useful in changing the chemical structures of biological systems due to its high electron density. TSP discharges as DC-driven self-pulsing discharges allow ionization and effective chemical processes to be performed easily. This type of plasma discharge consists of numerous streamers with a high electric field that can be transferred into short spark current pulses. In this study, we utilized a pin-to-ring TSP with a fixed voltage and frequency of ~ 5 kV and 220 Hz, respectively. The present study was conducted to estimate the synergetic effect of a TSP device and cysteine (Cys) in stopping hepatotoxicity. The interaction of Ar plasma with Cys solution was investigated by LCMS/MS, revealing that many new biochemical products with different molecular weights were produced under plasma treatment. Glutathione (GSH) level and DPPH scavenging activity were performed. Biochemical markers and histopathological analysis were also evaluated. Results revealed that by increased levels of GSH and anti-oxidant activity, PTC solution can preserve as opposed to injuries caused by CCl<sub>4</sub> injection to a greater extent than untreated Cys even at a low dose of amino acid. The ALP, ALT, and AST activity levels were closer to the normal level when PTC was received than Cys. After receiving PTC, more positive liver and kidney tissue changes were observed in the CCl<sub>4</sub> group. It also had a great impact on oxidative antioxidant parameters. Therefore, PTC as an effective drug has shown a positive effect in inhibiting hepatotoxicity because it contains various biomolecules under the influence of the plasma-produced reactive species.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 1\",\"pages\":\"279 - 296\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10527-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10527-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

冷等离子体在许多科学领域被认为是一种有效的方法。血浆治疗的一个极好的目标是氨基酸。瞬态火花等离子体放电(TSP)具有很高的电子密度,在改变生物体系的化学结构方面非常有用。TSP放电作为直流驱动的自脉冲放电,可以很容易地进行电离和有效的化学过程。这种类型的等离子体放电由许多具有高电场的流线组成,这些流线可以转换成短的火花电流脉冲。在这项研究中,我们使用了一个固定电压和频率分别为~ 5 kV和220 Hz的针环TSP。本研究旨在评估TSP装置和半胱氨酸(Cys)在阻止肝毒性方面的协同作用。通过LCMS/MS研究了Ar等离子体与Cys溶液的相互作用,发现在等离子体处理下产生了许多不同分子量的新生化产物。测定谷胱甘肽(GSH)水平和DPPH清除活性。生化指标和组织病理学分析也进行了评估。结果表明,通过提高GSH水平和抗氧化活性,即使在低剂量的氨基酸下,PTC溶液也能比未处理的CCl4更大程度地保护CCl4注射引起的损伤。接受PTC治疗时ALP、ALT和AST活性水平较Cys更接近正常水平。在接受PTC治疗后,CCl4组观察到更多阳性的肝脏和肾脏组织改变。对氧化抗氧化参数也有很大的影响。因此,PTC作为一种有效的药物,由于其含有多种生物分子,在血浆产生的活性物质的影响下,显示出了抑制肝毒性的积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats

Cold plasmas have been considered an effective method in numerous scientific fields. One excellent target for plasma treatment is amino acids. Transient spark plasma discharge (TSP) is very useful in changing the chemical structures of biological systems due to its high electron density. TSP discharges as DC-driven self-pulsing discharges allow ionization and effective chemical processes to be performed easily. This type of plasma discharge consists of numerous streamers with a high electric field that can be transferred into short spark current pulses. In this study, we utilized a pin-to-ring TSP with a fixed voltage and frequency of ~ 5 kV and 220 Hz, respectively. The present study was conducted to estimate the synergetic effect of a TSP device and cysteine (Cys) in stopping hepatotoxicity. The interaction of Ar plasma with Cys solution was investigated by LCMS/MS, revealing that many new biochemical products with different molecular weights were produced under plasma treatment. Glutathione (GSH) level and DPPH scavenging activity were performed. Biochemical markers and histopathological analysis were also evaluated. Results revealed that by increased levels of GSH and anti-oxidant activity, PTC solution can preserve as opposed to injuries caused by CCl4 injection to a greater extent than untreated Cys even at a low dose of amino acid. The ALP, ALT, and AST activity levels were closer to the normal level when PTC was received than Cys. After receiving PTC, more positive liver and kidney tissue changes were observed in the CCl4 group. It also had a great impact on oxidative antioxidant parameters. Therefore, PTC as an effective drug has shown a positive effect in inhibiting hepatotoxicity because it contains various biomolecules under the influence of the plasma-produced reactive species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1