Božena Šerá, Petra Šrámková, Barbora Tunklová, Sandra Ďurčányová, Michal Šerý, Hubert Žarnovičan, Anna Drozdíková, Leonid Satrapinský, Anna Zahoranová, Dušan Kováčik, František Hnilička
{"title":"不同植物黏液种子对非热大气等离子体处理的反应","authors":"Božena Šerá, Petra Šrámková, Barbora Tunklová, Sandra Ďurčányová, Michal Šerý, Hubert Žarnovičan, Anna Drozdíková, Leonid Satrapinský, Anna Zahoranová, Dušan Kováčik, František Hnilička","doi":"10.1007/s11090-024-10515-2","DOIUrl":null,"url":null,"abstract":"<div><p>Important representatives of mucilaginous seeds from different plant species, namely amaranth (<i>Amaranthus hypochondriacus</i> L.), garden cress (<i>Lepidium sativum</i> L.), common flax (<i>Linum usitatissimum</i> L.), psyllium (<i>Plantago ovata</i> Forssk.), and chia (<i>Salvia hispanica</i> L.) were subjected to non-thermal plasma (NTP) generated by diffuse coplanar surface barrier discharge with different exposure times (1, 3, 5, 10, 20, 30 s). Seed water uptake, kinematic viscosity, parameters of seed germination and initial seedling growth were monitored along with chemical and morphological changes on the seed surface. Water absorption increased with increasing plasma exposure time for garden cress, psyllium and chia seeds, but it was greatest for chia seeds. For all seed species, the kinematic viscosity decreased with increasing plasma exposure time. The highest values were found for chia seeds after a treatment for 30 s. Surface analyses did not reveal any chemical and morphological changes of the seed surface. According to a PCA comparison of basic characteristics of germination and initial growth, common flax seeds differ in their reaction to NTP from the other tested plants. On the contrary, chia seeds showed the best water uptake and kinematic viscosity. It was shown that NTP treatment improves the absorption of mucilaginous seeds and does not change the surface and structural properties of the seeds. These mucilaginous seeds can be used as raw seed, whereby NTP accelerates their preparation during soaking.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"325 - 350"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-024-10515-2.pdf","citationCount":"0","resultStr":"{\"title\":\"How Mucilaginous Seeds of Different Plant Species Respond to Nonthermal Atmospheric Plasma Treatment\",\"authors\":\"Božena Šerá, Petra Šrámková, Barbora Tunklová, Sandra Ďurčányová, Michal Šerý, Hubert Žarnovičan, Anna Drozdíková, Leonid Satrapinský, Anna Zahoranová, Dušan Kováčik, František Hnilička\",\"doi\":\"10.1007/s11090-024-10515-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Important representatives of mucilaginous seeds from different plant species, namely amaranth (<i>Amaranthus hypochondriacus</i> L.), garden cress (<i>Lepidium sativum</i> L.), common flax (<i>Linum usitatissimum</i> L.), psyllium (<i>Plantago ovata</i> Forssk.), and chia (<i>Salvia hispanica</i> L.) were subjected to non-thermal plasma (NTP) generated by diffuse coplanar surface barrier discharge with different exposure times (1, 3, 5, 10, 20, 30 s). Seed water uptake, kinematic viscosity, parameters of seed germination and initial seedling growth were monitored along with chemical and morphological changes on the seed surface. Water absorption increased with increasing plasma exposure time for garden cress, psyllium and chia seeds, but it was greatest for chia seeds. For all seed species, the kinematic viscosity decreased with increasing plasma exposure time. The highest values were found for chia seeds after a treatment for 30 s. Surface analyses did not reveal any chemical and morphological changes of the seed surface. According to a PCA comparison of basic characteristics of germination and initial growth, common flax seeds differ in their reaction to NTP from the other tested plants. On the contrary, chia seeds showed the best water uptake and kinematic viscosity. It was shown that NTP treatment improves the absorption of mucilaginous seeds and does not change the surface and structural properties of the seeds. These mucilaginous seeds can be used as raw seed, whereby NTP accelerates their preparation during soaking.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 1\",\"pages\":\"325 - 350\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11090-024-10515-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10515-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10515-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
How Mucilaginous Seeds of Different Plant Species Respond to Nonthermal Atmospheric Plasma Treatment
Important representatives of mucilaginous seeds from different plant species, namely amaranth (Amaranthus hypochondriacus L.), garden cress (Lepidium sativum L.), common flax (Linum usitatissimum L.), psyllium (Plantago ovata Forssk.), and chia (Salvia hispanica L.) were subjected to non-thermal plasma (NTP) generated by diffuse coplanar surface barrier discharge with different exposure times (1, 3, 5, 10, 20, 30 s). Seed water uptake, kinematic viscosity, parameters of seed germination and initial seedling growth were monitored along with chemical and morphological changes on the seed surface. Water absorption increased with increasing plasma exposure time for garden cress, psyllium and chia seeds, but it was greatest for chia seeds. For all seed species, the kinematic viscosity decreased with increasing plasma exposure time. The highest values were found for chia seeds after a treatment for 30 s. Surface analyses did not reveal any chemical and morphological changes of the seed surface. According to a PCA comparison of basic characteristics of germination and initial growth, common flax seeds differ in their reaction to NTP from the other tested plants. On the contrary, chia seeds showed the best water uptake and kinematic viscosity. It was shown that NTP treatment improves the absorption of mucilaginous seeds and does not change the surface and structural properties of the seeds. These mucilaginous seeds can be used as raw seed, whereby NTP accelerates their preparation during soaking.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.