通过非热常压等离子体辅助聚合制备功能化氧化铁纳米颗粒以降低细胞毒性

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-10-12 DOI:10.1007/s11090-024-10521-4
K. Navaneetha Pandiyaraj, M. Karuppusamy, Vandana Chaturvedi Misra, S. Ghorui, P. Saravanan, Mallikarjuna N. Nadagouda, M. Pichumani, Sebastian P. Schwaminger, Verena Zach
{"title":"通过非热常压等离子体辅助聚合制备功能化氧化铁纳米颗粒以降低细胞毒性","authors":"K. Navaneetha Pandiyaraj,&nbsp;M. Karuppusamy,&nbsp;Vandana Chaturvedi Misra,&nbsp;S. Ghorui,&nbsp;P. Saravanan,&nbsp;Mallikarjuna N. Nadagouda,&nbsp;M. Pichumani,&nbsp;Sebastian P. Schwaminger,&nbsp;Verena Zach","doi":"10.1007/s11090-024-10521-4","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims to synthesize and homogeneously functionalize iron oxide nanoparticles (IONPs) using a non-thermal atmospheric pressure (NTAP) plasma for biological applications. IONPs were synthesized using a new NTAP plasma assisted electrolysis technique. The utilization of a unique NTAP plasma rotating reactor allows for a uniform surface functionalization throughout the IONP surface. The precursor used for the functionalization process was acrylic acid (AAc), and it was carried out in response to the applied voltage and monomer flow rate. Optical emission spectroscopy (OES) was used to investigate the reactive species in-situ throughout the functionalization process. Vibrating-sample magnetometry (VSM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and X-ray photo electron spectroscopy (XPS) were used to analyse the changes in the chemical, structural, morphological, and magnetic properties of the untreated and functionalized IONPs. Subsequently, chemical dosimetry and the in vitro metabolic activity assay (MTT) were used to analyse the OH• radical production capacity and toxicity of IONPs. The findings showed that the experimental working conditions had a significant impact on retaining the distinctive COOH functional groups on the surface of functionalized IONPs. The coexistence of the hematite (Fe<sub>2</sub>O<sub>3</sub>) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) phases is revealed by the untreated and functionalized IONPs, which also exhibit marked super paramagnetic performance and a spherical shape. In the end, the IONPs demonstrated clear nontoxicity when they were functionalized at greater flow rates and reduced applied voltage. The analysis results unequivocally demonstrated the functionalized IONPs’ non-toxicity, highlighting their prospective application in the field of biomedicine.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"133 - 159"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Functionalized Iron Oxide Nanoparticles Through Non-Thermal Atmospheric Pressure Plasma Assisted Polymerization for Reducing Cytotoxicity\",\"authors\":\"K. Navaneetha Pandiyaraj,&nbsp;M. Karuppusamy,&nbsp;Vandana Chaturvedi Misra,&nbsp;S. Ghorui,&nbsp;P. Saravanan,&nbsp;Mallikarjuna N. Nadagouda,&nbsp;M. Pichumani,&nbsp;Sebastian P. Schwaminger,&nbsp;Verena Zach\",\"doi\":\"10.1007/s11090-024-10521-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study aims to synthesize and homogeneously functionalize iron oxide nanoparticles (IONPs) using a non-thermal atmospheric pressure (NTAP) plasma for biological applications. IONPs were synthesized using a new NTAP plasma assisted electrolysis technique. The utilization of a unique NTAP plasma rotating reactor allows for a uniform surface functionalization throughout the IONP surface. The precursor used for the functionalization process was acrylic acid (AAc), and it was carried out in response to the applied voltage and monomer flow rate. Optical emission spectroscopy (OES) was used to investigate the reactive species in-situ throughout the functionalization process. Vibrating-sample magnetometry (VSM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and X-ray photo electron spectroscopy (XPS) were used to analyse the changes in the chemical, structural, morphological, and magnetic properties of the untreated and functionalized IONPs. Subsequently, chemical dosimetry and the in vitro metabolic activity assay (MTT) were used to analyse the OH• radical production capacity and toxicity of IONPs. The findings showed that the experimental working conditions had a significant impact on retaining the distinctive COOH functional groups on the surface of functionalized IONPs. The coexistence of the hematite (Fe<sub>2</sub>O<sub>3</sub>) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) phases is revealed by the untreated and functionalized IONPs, which also exhibit marked super paramagnetic performance and a spherical shape. In the end, the IONPs demonstrated clear nontoxicity when they were functionalized at greater flow rates and reduced applied voltage. The analysis results unequivocally demonstrated the functionalized IONPs’ non-toxicity, highlighting their prospective application in the field of biomedicine.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 1\",\"pages\":\"133 - 159\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10521-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10521-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

该研究旨在利用非热大气压(NTAP)等离子体合成和均质功能化氧化铁纳米颗粒(IONPs),用于生物应用。采用新的NTAP等离子体辅助电解技术合成离子粒子。利用独特的NTAP等离子体旋转反应器,可以在整个IONP表面实现均匀的表面功能化。功能化过程的前驱体为丙烯酸(AAc),并根据施加电压和单体流量进行反应。在整个功能化过程中,利用光学发射光谱(OES)对活性物质进行了原位研究。利用振动样品磁强计(VSM)、能量色散x射线分析(EDX)、x射线衍射(XRD)、场发射扫描电镜(FE-SEM)和x射线光电子能谱(XPS)分析了未处理和功能化离子的化学、结构、形态和磁性能的变化。随后,采用化学剂量法和体外代谢活性法(MTT)分析了IONPs的OH•自由基生成能力和毒性。结果表明,实验工作条件对保留功能化离子表面独特的COOH官能团有显著影响。未经处理和功能化的离子粒子显示了赤铁矿(Fe2O3)和磁铁矿(Fe3O4)相的共存,并表现出明显的超顺磁性和球形。最后,在更大的流速和更低的施加电压下,离子束显示出明显的无毒性。分析结果明确证明了功能化离子内酯的无毒性,突出了其在生物医学领域的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Functionalized Iron Oxide Nanoparticles Through Non-Thermal Atmospheric Pressure Plasma Assisted Polymerization for Reducing Cytotoxicity

The study aims to synthesize and homogeneously functionalize iron oxide nanoparticles (IONPs) using a non-thermal atmospheric pressure (NTAP) plasma for biological applications. IONPs were synthesized using a new NTAP plasma assisted electrolysis technique. The utilization of a unique NTAP plasma rotating reactor allows for a uniform surface functionalization throughout the IONP surface. The precursor used for the functionalization process was acrylic acid (AAc), and it was carried out in response to the applied voltage and monomer flow rate. Optical emission spectroscopy (OES) was used to investigate the reactive species in-situ throughout the functionalization process. Vibrating-sample magnetometry (VSM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and X-ray photo electron spectroscopy (XPS) were used to analyse the changes in the chemical, structural, morphological, and magnetic properties of the untreated and functionalized IONPs. Subsequently, chemical dosimetry and the in vitro metabolic activity assay (MTT) were used to analyse the OH• radical production capacity and toxicity of IONPs. The findings showed that the experimental working conditions had a significant impact on retaining the distinctive COOH functional groups on the surface of functionalized IONPs. The coexistence of the hematite (Fe2O3) and magnetite (Fe3O4) phases is revealed by the untreated and functionalized IONPs, which also exhibit marked super paramagnetic performance and a spherical shape. In the end, the IONPs demonstrated clear nontoxicity when they were functionalized at greater flow rates and reduced applied voltage. The analysis results unequivocally demonstrated the functionalized IONPs’ non-toxicity, highlighting their prospective application in the field of biomedicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture Plasma and Flow Simulation of the Ion Wind in a Surface Barrier Discharge Used for Gas Conversion Benchmarked by Schlieren Imaging Separation of Plasma Species for Investigating the Impact of Hydrogen Plasmas on the Work Function of Caesiated Surfaces Transient Spark Plasma-Treated L-Cysteine Reduces CCl4-Induced Hepatotoxicity in Rats Perspectives on Coupling Nonthermal Plasma Generated in Gas–Liquid Water Environments with Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1