使用卷积神经网络自动诊断和分类掌骨和指骨骨折:回顾性数据分析研究。

IF 2.5 2区 医学 Q1 ORTHOPEDICS Acta Orthopaedica Pub Date : 2025-01-09 DOI:10.2340/17453674.2024.42702
Michael Axenhus, Anna Wallin, Jonas Havela, Sara Severin, Ablikim Karahan, Max Gordon, Martin Magnéli
{"title":"使用卷积神经网络自动诊断和分类掌骨和指骨骨折:回顾性数据分析研究。","authors":"Michael Axenhus, Anna Wallin, Jonas Havela, Sara Severin, Ablikim Karahan, Max Gordon, Martin Magnéli","doi":"10.2340/17453674.2024.42702","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong> Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.</p><p><strong>Methods: </strong> A retrospective analysis of 7,515 examinations comprising 27,965 images was conducted, with datasets divided into training, validation, and test datasets. A CNN architecture was based on ResNet and implemented using PyTorch, with the integration of data augmentation techniques.</p><p><strong>Results: </strong> The CNN model achieved a mean weighted AUC of 0.84 for hand fractures, with 86% sensitivity and 76% specificity. The model performed best in diagnosing transverse metacarpal fractures, AUC = 0.91, 100% sensitivity, 87% specificity, and tuft phalangeal fractures, AUC = 0.97, 100% sensitivity, 96% specificity. Performance was lower for complex patterns like oblique phalangeal fractures, AUC = 0.76.</p><p><strong>Conclusion: </strong> Our study demonstrated that a CNN model can effectively diagnose and classify metacarpal and phalangeal fractures using plain radiographs, achieving a mean weighted AUC of 0.84. 7 categories were deemed as acceptable, 9 categories as excellent, and 3 categories as outstanding. Our findings indicate that a CNN model may be used in the classification of hand fractures.</p>","PeriodicalId":6916,"journal":{"name":"Acta Orthopaedica","volume":"96 ","pages":"13-18"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.\",\"authors\":\"Michael Axenhus, Anna Wallin, Jonas Havela, Sara Severin, Ablikim Karahan, Max Gordon, Martin Magnéli\",\"doi\":\"10.2340/17453674.2024.42702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong> Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.</p><p><strong>Methods: </strong> A retrospective analysis of 7,515 examinations comprising 27,965 images was conducted, with datasets divided into training, validation, and test datasets. A CNN architecture was based on ResNet and implemented using PyTorch, with the integration of data augmentation techniques.</p><p><strong>Results: </strong> The CNN model achieved a mean weighted AUC of 0.84 for hand fractures, with 86% sensitivity and 76% specificity. The model performed best in diagnosing transverse metacarpal fractures, AUC = 0.91, 100% sensitivity, 87% specificity, and tuft phalangeal fractures, AUC = 0.97, 100% sensitivity, 96% specificity. Performance was lower for complex patterns like oblique phalangeal fractures, AUC = 0.76.</p><p><strong>Conclusion: </strong> Our study demonstrated that a CNN model can effectively diagnose and classify metacarpal and phalangeal fractures using plain radiographs, achieving a mean weighted AUC of 0.84. 7 categories were deemed as acceptable, 9 categories as excellent, and 3 categories as outstanding. Our findings indicate that a CNN model may be used in the classification of hand fractures.</p>\",\"PeriodicalId\":6916,\"journal\":{\"name\":\"Acta Orthopaedica\",\"volume\":\"96 \",\"pages\":\"13-18\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Orthopaedica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2340/17453674.2024.42702\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Orthopaedica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/17453674.2024.42702","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:手部骨折常见于急诊科,但诊断错误持续存在,导致潜在的并发症。人工智能(AI)在骨折检测中的应用已经显示出前景,但针对手掌骨和指骨骨折的研究仍然有限。我们的目的是训练和评估卷积神经网络(CNN)模型,根据AO/OTA分类系统和自定义分类器使用x线平片诊断掌骨和指骨骨折。方法:回顾性分析包括27,965张图像的7,515次检查,数据集分为训练、验证和测试数据集。CNN架构基于ResNet,使用PyTorch实现,并集成了数据增强技术。结果:CNN模型对手部骨折的平均加权AUC为0.84,敏感性为86%,特异性为76%。该模型对掌骨横断骨折的诊断效果最好,AUC = 0.91,敏感性100%,特异性87%;对簇状指骨骨折的诊断效果最好,AUC = 0.97,敏感性100%,特异性96%。对于复杂类型如斜指骨折,AUC = 0.76,表现较差。结论:我们的研究表明,CNN模型可以有效地利用x线平片对掌骨和指骨骨折进行诊断和分类,平均加权AUC为0.84。7个类别为可接受,9个类别为优秀,3个类别为优秀。我们的研究结果表明,CNN模型可用于手部骨折的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Background and purpose:  Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.

Methods:  A retrospective analysis of 7,515 examinations comprising 27,965 images was conducted, with datasets divided into training, validation, and test datasets. A CNN architecture was based on ResNet and implemented using PyTorch, with the integration of data augmentation techniques.

Results:  The CNN model achieved a mean weighted AUC of 0.84 for hand fractures, with 86% sensitivity and 76% specificity. The model performed best in diagnosing transverse metacarpal fractures, AUC = 0.91, 100% sensitivity, 87% specificity, and tuft phalangeal fractures, AUC = 0.97, 100% sensitivity, 96% specificity. Performance was lower for complex patterns like oblique phalangeal fractures, AUC = 0.76.

Conclusion:  Our study demonstrated that a CNN model can effectively diagnose and classify metacarpal and phalangeal fractures using plain radiographs, achieving a mean weighted AUC of 0.84. 7 categories were deemed as acceptable, 9 categories as excellent, and 3 categories as outstanding. Our findings indicate that a CNN model may be used in the classification of hand fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Acta Orthopaedica
Acta Orthopaedica 医学-整形外科
CiteScore
6.40
自引率
8.10%
发文量
105
审稿时长
4-8 weeks
期刊介绍: Acta Orthopaedica (previously Acta Orthopaedica Scandinavica) presents original articles of basic research interest, as well as clinical studies in the field of orthopedics and related sub disciplines. Ever since the journal was founded in 1930, by a group of Scandinavian orthopedic surgeons, the journal has been published for an international audience. Acta Orthopaedica is owned by the Nordic Orthopaedic Federation and is the official publication of this federation.
期刊最新文献
Day-case hip and knee arthroplasty does not increase healthcare system contacts: a prospective multicenter study in a public healthcare setting. Time trends in spine surgery in Italy: a nationwide, population-based study of 1,560,969 records of administrative health data from 2001 to 2019. Association of socioeconomic status on return to work following primary total hip arthroplasty: a Danish population-based cohort study on 9,431 patients from 2008-2018. Incidence of and survival after surgery for metastatic spine disease: a nationwide register-based study between 1997 and 2020 from Finland. Ulnar shortening osteotomy for ulna impaction syndrome with positive ulnar variance: retrospective outcome analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1