斯里兰卡不明原因慢性肾病(CKDu)流行地区部分风化岩石中地质污染物的地球化学分配和淋滤行为

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2025-01-10 DOI:10.1007/s10653-024-02353-0
Manura Weerasinghe, Sandun Sandanayake, Anushka Upamali Rajapaksha, Meththika Vithanage
{"title":"斯里兰卡不明原因慢性肾病(CKDu)流行地区部分风化岩石中地质污染物的地球化学分配和淋滤行为","authors":"Manura Weerasinghe, Sandun Sandanayake, Anushka Upamali Rajapaksha, Meththika Vithanage","doi":"10.1007/s10653-024-02353-0","DOIUrl":null,"url":null,"abstract":"<p><p>Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions. Leaching experiments were conducted for powdered rocks using HCO<sub>3</sub><sup>-</sup> rich water and deionized water (DI) to determine the kinetics of Hofmeister ion release into groundwater. Fluoride fractionation in rocks was determined through a sequential extraction. The most abundant ions in both rocks from CKDu endemic and non-endemic areas were Cl<sup>-</sup>; possibly due to carbonate and silicate minerals and Mg<sup>2+</sup>; possibly due to biotite minerals. Maximum leaching capacities of Hofmeister ions; F<sup>-</sup>, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup> were higher with HCO<sub>3</sub><sup>-</sup> rich water compared to deionized water in both rocks from Girandurukotte (F<sup>-</sup><sub>HCO3</sub>: 5.51 mg/kg > F<sup>-</sup><sub>DI</sub>: 2.62 mg/kg) and Sewanagala (F<sup>-</sup><sub>HCO3</sub>: 6.24 mg/kg > F<sup>-</sup><sub>DI</sub>: 3.78 mg/kg). This F<sup>-</sup> variation might be due to the higher exchangeable fraction in the rock from Sewanagala (2.027 mg/kg) compared to Girandurukotte (0.963 mg/kg). Although, the organic matter bound F<sup>-</sup> fraction in the rock from Girandurukotte (47.62 mg/kg) was higher than that of Sewanagala (31.66 mg/kg). However, the cumulative effect of exchangeable, carbonate bound, Fe-Mn oxide bound, and organic matter bound F<sup>-</sup> fraction in the rock from Girandurukotte was higher (52.6%) compared to Sewanagala, making F<sup>-</sup> a possible risk factor for CKDu.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"48"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical partitioning and leaching behaviour of geogenic contaminants from the partially weathered rocks in chronic kidney disease of unknown etiology (CKDu) endemic regions in Sri Lanka.\",\"authors\":\"Manura Weerasinghe, Sandun Sandanayake, Anushka Upamali Rajapaksha, Meththika Vithanage\",\"doi\":\"10.1007/s10653-024-02353-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions. Leaching experiments were conducted for powdered rocks using HCO<sub>3</sub><sup>-</sup> rich water and deionized water (DI) to determine the kinetics of Hofmeister ion release into groundwater. Fluoride fractionation in rocks was determined through a sequential extraction. The most abundant ions in both rocks from CKDu endemic and non-endemic areas were Cl<sup>-</sup>; possibly due to carbonate and silicate minerals and Mg<sup>2+</sup>; possibly due to biotite minerals. Maximum leaching capacities of Hofmeister ions; F<sup>-</sup>, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup> were higher with HCO<sub>3</sub><sup>-</sup> rich water compared to deionized water in both rocks from Girandurukotte (F<sup>-</sup><sub>HCO3</sub>: 5.51 mg/kg > F<sup>-</sup><sub>DI</sub>: 2.62 mg/kg) and Sewanagala (F<sup>-</sup><sub>HCO3</sub>: 6.24 mg/kg > F<sup>-</sup><sub>DI</sub>: 3.78 mg/kg). This F<sup>-</sup> variation might be due to the higher exchangeable fraction in the rock from Sewanagala (2.027 mg/kg) compared to Girandurukotte (0.963 mg/kg). Although, the organic matter bound F<sup>-</sup> fraction in the rock from Girandurukotte (47.62 mg/kg) was higher than that of Sewanagala (31.66 mg/kg). However, the cumulative effect of exchangeable, carbonate bound, Fe-Mn oxide bound, and organic matter bound F<sup>-</sup> fraction in the rock from Girandurukotte was higher (52.6%) compared to Sewanagala, making F<sup>-</sup> a possible risk factor for CKDu.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 2\",\"pages\":\"48\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02353-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02353-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

Hofmeister离子被认为是病因不明的慢性肾脏疾病(CKDu)的危险/致病因素,但对其地球化学分配和浸出行为的研究很少。因此,比较了斯里兰卡CKDu地方性地区(Girandurukotte)和非地方性地区(Sewanagala)部分风化岩石的Hofmeister离子淋溶行为。用x射线衍射分析了岩石矿物学,用碱性和酸性消化法测定了总离子含量。采用富HCO3水和去离子水(DI)对粉状岩石进行浸出试验,研究Hofmeister离子向地下水释放的动力学。岩石中的氟化物分馏是通过连续萃取测定的。CKDu病区和非病区岩石中含量最高的离子均为Cl-;可能是由于碳酸盐和硅酸盐矿物和Mg2+;可能是由于黑云母矿物。Hofmeister离子的最大浸出能力;与来自Girandurukotte (F-HCO3: 5.51 mg/kg > F- di: 2.62 mg/kg)和Sewanagala (F-HCO3: 6.24 mg/kg > F- di: 3.78 mg/kg)的岩石中的去离子水相比,富HCO3水中的F-、Cl-、SO42-、K+、Mg2+、Ca2+含量更高。这种F-变化可能是由于Sewanagala岩石中的交换分数(2.027 mg/kg)高于Girandurukotte岩石(0.963 mg/kg)。但Girandurukotte岩石中有机质结合F-分数(47.62 mg/kg)高于Sewanagala岩石(31.66 mg/kg)。然而,与Sewanagala相比,Girandurukotte岩石中交换态、碳酸盐结合态、Fe-Mn氧化物结合态和有机质结合态F-组分的累积效应更高(52.6%),F-可能是CKDu的危险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geochemical partitioning and leaching behaviour of geogenic contaminants from the partially weathered rocks in chronic kidney disease of unknown etiology (CKDu) endemic regions in Sri Lanka.

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions. Leaching experiments were conducted for powdered rocks using HCO3- rich water and deionized water (DI) to determine the kinetics of Hofmeister ion release into groundwater. Fluoride fractionation in rocks was determined through a sequential extraction. The most abundant ions in both rocks from CKDu endemic and non-endemic areas were Cl-; possibly due to carbonate and silicate minerals and Mg2+; possibly due to biotite minerals. Maximum leaching capacities of Hofmeister ions; F-, Cl-, SO42-, K+, Mg2+, Ca2+ were higher with HCO3- rich water compared to deionized water in both rocks from Girandurukotte (F-HCO3: 5.51 mg/kg > F-DI: 2.62 mg/kg) and Sewanagala (F-HCO3: 6.24 mg/kg > F-DI: 3.78 mg/kg). This F- variation might be due to the higher exchangeable fraction in the rock from Sewanagala (2.027 mg/kg) compared to Girandurukotte (0.963 mg/kg). Although, the organic matter bound F- fraction in the rock from Girandurukotte (47.62 mg/kg) was higher than that of Sewanagala (31.66 mg/kg). However, the cumulative effect of exchangeable, carbonate bound, Fe-Mn oxide bound, and organic matter bound F- fraction in the rock from Girandurukotte was higher (52.6%) compared to Sewanagala, making F- a possible risk factor for CKDu.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Correction: Polychlorinated biphenyls induced toxicities upon cell lines and stem cells: a review. Balancing application of plant growth-promoting bacteria and biochar in promoting selenium biofortification and remediating combined heavy metal pollution in paddy soil. Synergistic effects of indigenous bacterial consortia on heavy metal tolerance and reduction. Pedogeochemical mobility of metals from fluorescent lamp waste and human health risk assessment. Soil heavy metals assessment of the Zhoukou riparian zone base of Shaying river basin, China: spatial distribution, source analysis and ecological risk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1