Evelyn M Hoover, Christine A Schneider, Christian Crouzet, Tatiane S Lima, Dario X Figueroa Velez, Cuong J Tran, Dritan Agalliu, Sunil P Gandhi, Bernard Choi, Melissa B Lodoen
{"title":"刚地弓形虫感染引发血脑屏障凝血和脑血流量减少。","authors":"Evelyn M Hoover, Christine A Schneider, Christian Crouzet, Tatiane S Lima, Dario X Figueroa Velez, Cuong J Tran, Dritan Agalliu, Sunil P Gandhi, Bernard Choi, Melissa B Lodoen","doi":"10.1186/s12974-024-03330-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB). However, little is known about the effect of T. gondii infection on the BBB and the functional consequences of infection on cerebral blood flow (CBF) during the different stages of infection.</p><p><strong>Main body: </strong>We demonstrate that brain endothelial cells upregulate the adhesion molecules ICAM-1 and VCAM-1 and become morphologically more tortuous during acute T. gondii infection of mice. Longitudinal two-photon imaging of cerebral blood vessels during infection in mice revealed vascular occlusion in the brain, prompting an analysis of the coagulation cascade. We detected platelet-fibrin clots within the cerebral vasculature during acute infection. Analysis of CBF using longitudinal laser-speckle imaging during T. gondii infection demonstrated that CBF decreased during acute infection, recovered during stable chronic infection, and decreased again during reactivation of the infection induced by IFN-γ depletion. Finally, we demonstrate that treatment of mice with a low-molecular-weight heparin, an anticoagulant, during infection partially rescued CBF in T. gondii-infected mice without affecting parasite burden.</p><p><strong>Conclusions: </strong>Our data provide insight into the host-pathogen interactions of a CNS parasite within the brain vasculature and suggest that thrombosis and changes in cerebral hemodynamics may be an unappreciated aspect of infection with T. gondii.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"3"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Infection with Toxoplasma gondii triggers coagulation at the blood-brain barrier and a reduction in cerebral blood flow.\",\"authors\":\"Evelyn M Hoover, Christine A Schneider, Christian Crouzet, Tatiane S Lima, Dario X Figueroa Velez, Cuong J Tran, Dritan Agalliu, Sunil P Gandhi, Bernard Choi, Melissa B Lodoen\",\"doi\":\"10.1186/s12974-024-03330-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB). However, little is known about the effect of T. gondii infection on the BBB and the functional consequences of infection on cerebral blood flow (CBF) during the different stages of infection.</p><p><strong>Main body: </strong>We demonstrate that brain endothelial cells upregulate the adhesion molecules ICAM-1 and VCAM-1 and become morphologically more tortuous during acute T. gondii infection of mice. Longitudinal two-photon imaging of cerebral blood vessels during infection in mice revealed vascular occlusion in the brain, prompting an analysis of the coagulation cascade. We detected platelet-fibrin clots within the cerebral vasculature during acute infection. Analysis of CBF using longitudinal laser-speckle imaging during T. gondii infection demonstrated that CBF decreased during acute infection, recovered during stable chronic infection, and decreased again during reactivation of the infection induced by IFN-γ depletion. Finally, we demonstrate that treatment of mice with a low-molecular-weight heparin, an anticoagulant, during infection partially rescued CBF in T. gondii-infected mice without affecting parasite burden.</p><p><strong>Conclusions: </strong>Our data provide insight into the host-pathogen interactions of a CNS parasite within the brain vasculature and suggest that thrombosis and changes in cerebral hemodynamics may be an unappreciated aspect of infection with T. gondii.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"3\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03330-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03330-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Infection with Toxoplasma gondii triggers coagulation at the blood-brain barrier and a reduction in cerebral blood flow.
Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB). However, little is known about the effect of T. gondii infection on the BBB and the functional consequences of infection on cerebral blood flow (CBF) during the different stages of infection.
Main body: We demonstrate that brain endothelial cells upregulate the adhesion molecules ICAM-1 and VCAM-1 and become morphologically more tortuous during acute T. gondii infection of mice. Longitudinal two-photon imaging of cerebral blood vessels during infection in mice revealed vascular occlusion in the brain, prompting an analysis of the coagulation cascade. We detected platelet-fibrin clots within the cerebral vasculature during acute infection. Analysis of CBF using longitudinal laser-speckle imaging during T. gondii infection demonstrated that CBF decreased during acute infection, recovered during stable chronic infection, and decreased again during reactivation of the infection induced by IFN-γ depletion. Finally, we demonstrate that treatment of mice with a low-molecular-weight heparin, an anticoagulant, during infection partially rescued CBF in T. gondii-infected mice without affecting parasite burden.
Conclusions: Our data provide insight into the host-pathogen interactions of a CNS parasite within the brain vasculature and suggest that thrombosis and changes in cerebral hemodynamics may be an unappreciated aspect of infection with T. gondii.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.