{"title":"牛蒡提取物抑制3T3-L1细胞脂肪细胞分化。","authors":"Akihiro Maeta, Yuka Okamoto, Honoka Ishikawa, Tetsuro Matsunaga, Kyoko Takahashi","doi":"10.1007/s11130-024-01257-9","DOIUrl":null,"url":null,"abstract":"<p><p>Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity. However, the anti-adipogenic activity of the aboveground parts of burdock remains underexplored. Therefore, this study determined the anti-adipogenic effects of burdock leaf extract on 3T3-L1 adipocytes. Seventy percent ethanol (EtOH) extract of burdock leaves, which inhibited lipid accumulation, was fractionated into five fractions using Diaion<sup>®</sup> HP-20. EtOH eluted fractions (40 and 80%) strongly inhibited lipid accumulation. A common compound in these fractions was onopordopicrin (OPP), and purified OPP suppressed lipid accumulation and inhibited adipocyte differentiation. α, β-unsaturated carbonyl structure of OPP suggests potential electrophilic reactivity with polyfunctional thiol-trapping agents like cysteine residues. Indeed, the anti-adipogenic effects of OPP disappeared with the addition of cysteamine, which possesses a thiol group. Rhodamine-maleimide assay showed that OPP binds to the cysteine residues of adipocyte-specific transcription factor, peroxisome proliferator-activated receptor γ (PPARγ). Hence, our findings suggest that OPP exerts its anti-adipogenic action via binding to cysteine residues in signal proteins like PPARγ, inhibiting their activation. Thus, burdock leaf extract is a potential source of OPP, a bioactive compound with anti-obesity activity.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 1","pages":"32"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.\",\"authors\":\"Akihiro Maeta, Yuka Okamoto, Honoka Ishikawa, Tetsuro Matsunaga, Kyoko Takahashi\",\"doi\":\"10.1007/s11130-024-01257-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity. However, the anti-adipogenic activity of the aboveground parts of burdock remains underexplored. Therefore, this study determined the anti-adipogenic effects of burdock leaf extract on 3T3-L1 adipocytes. Seventy percent ethanol (EtOH) extract of burdock leaves, which inhibited lipid accumulation, was fractionated into five fractions using Diaion<sup>®</sup> HP-20. EtOH eluted fractions (40 and 80%) strongly inhibited lipid accumulation. A common compound in these fractions was onopordopicrin (OPP), and purified OPP suppressed lipid accumulation and inhibited adipocyte differentiation. α, β-unsaturated carbonyl structure of OPP suggests potential electrophilic reactivity with polyfunctional thiol-trapping agents like cysteine residues. Indeed, the anti-adipogenic effects of OPP disappeared with the addition of cysteamine, which possesses a thiol group. Rhodamine-maleimide assay showed that OPP binds to the cysteine residues of adipocyte-specific transcription factor, peroxisome proliferator-activated receptor γ (PPARγ). Hence, our findings suggest that OPP exerts its anti-adipogenic action via binding to cysteine residues in signal proteins like PPARγ, inhibiting their activation. Thus, burdock leaf extract is a potential source of OPP, a bioactive compound with anti-obesity activity.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":\"80 1\",\"pages\":\"32\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-024-01257-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01257-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.
Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity. However, the anti-adipogenic activity of the aboveground parts of burdock remains underexplored. Therefore, this study determined the anti-adipogenic effects of burdock leaf extract on 3T3-L1 adipocytes. Seventy percent ethanol (EtOH) extract of burdock leaves, which inhibited lipid accumulation, was fractionated into five fractions using Diaion® HP-20. EtOH eluted fractions (40 and 80%) strongly inhibited lipid accumulation. A common compound in these fractions was onopordopicrin (OPP), and purified OPP suppressed lipid accumulation and inhibited adipocyte differentiation. α, β-unsaturated carbonyl structure of OPP suggests potential electrophilic reactivity with polyfunctional thiol-trapping agents like cysteine residues. Indeed, the anti-adipogenic effects of OPP disappeared with the addition of cysteamine, which possesses a thiol group. Rhodamine-maleimide assay showed that OPP binds to the cysteine residues of adipocyte-specific transcription factor, peroxisome proliferator-activated receptor γ (PPARγ). Hence, our findings suggest that OPP exerts its anti-adipogenic action via binding to cysteine residues in signal proteins like PPARγ, inhibiting their activation. Thus, burdock leaf extract is a potential source of OPP, a bioactive compound with anti-obesity activity.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods