植物根部的超分辨扩展显微镜

Michelle Gallei, Sven Truckenbrodt, Caroline Kreuzinger, Syamala Inumella, Vitali Vistunou, Christoph Sommer, Mojtaba R Tavakoli, Nathalie Agudelo Dueñas, Jakob Vorlaufer, Wiebke Jahr, Marek Randuch, Alexander Johnson, Eva Benková, Jiří Friml, Johann G Danzl
{"title":"植物根部的超分辨扩展显微镜","authors":"Michelle Gallei, Sven Truckenbrodt, Caroline Kreuzinger, Syamala Inumella, Vitali Vistunou, Christoph Sommer, Mojtaba R Tavakoli, Nathalie Agudelo Dueñas, Jakob Vorlaufer, Wiebke Jahr, Marek Randuch, Alexander Johnson, Eva Benková, Jiří Friml, Johann G Danzl","doi":"10.1093/plcell/koaf006","DOIUrl":null,"url":null,"abstract":"Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants’ challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample. However, its application to plants has been hindered by the rigid, mechanically cohesive structure of plant tissues. Here, we report on whole-mount expansion microscopy of thale cress (Arabidopsis thaliana) root tissues (PlantEx), achieving a four-fold resolution increase over conventional microscopy. Our results highlight the microtubule cytoskeleton organization and interaction between molecularly defined cellular constituents. Combining PlantEx with stimulated emission depletion (STED) microscopy, we increase nanoscale resolution and visualize the complex organization of subcellular organelles from intact tissues by example of the densely packed COPI-coated vesicles associated with the Golgi apparatus and put these into a cellular structural context. Our results show that expansion microscopy can be applied to increase effective imaging resolution in Arabidopsis root specimens.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution expansion microscopy in plant roots\",\"authors\":\"Michelle Gallei, Sven Truckenbrodt, Caroline Kreuzinger, Syamala Inumella, Vitali Vistunou, Christoph Sommer, Mojtaba R Tavakoli, Nathalie Agudelo Dueñas, Jakob Vorlaufer, Wiebke Jahr, Marek Randuch, Alexander Johnson, Eva Benková, Jiří Friml, Johann G Danzl\",\"doi\":\"10.1093/plcell/koaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants’ challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample. However, its application to plants has been hindered by the rigid, mechanically cohesive structure of plant tissues. Here, we report on whole-mount expansion microscopy of thale cress (Arabidopsis thaliana) root tissues (PlantEx), achieving a four-fold resolution increase over conventional microscopy. Our results highlight the microtubule cytoskeleton organization and interaction between molecularly defined cellular constituents. Combining PlantEx with stimulated emission depletion (STED) microscopy, we increase nanoscale resolution and visualize the complex organization of subcellular organelles from intact tissues by example of the densely packed COPI-coated vesicles associated with the Golgi apparatus and put these into a cellular structural context. Our results show that expansion microscopy can be applied to increase effective imaging resolution in Arabidopsis root specimens.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超分辨率方法提供的空间分辨率远高于光学衍射极限,约为光波长的一半(~ 200-300 nm)。然而,它们尚未在植物中得到广泛应用,主要是由于植物具有挑战性的光学特性。膨胀显微镜通过各向同性地增加样品结构之间的物理距离,同时保持相对的空间排列和清除样品,提高了有效的分辨率。然而,其在植物中的应用一直受到植物组织的刚性、机械内聚结构的阻碍。在这里,我们报告了拟南芥(拟南芥)根组织(PlantEx)的全mount扩增显微镜,实现了比传统显微镜四倍的分辨率提高。我们的结果突出了微管细胞骨架组织和分子定义的细胞成分之间的相互作用。结合PlantEx和受激发射损耗(STED)显微镜,我们提高了纳米级分辨率,并通过与高尔基体相关的密集排列的copi包被囊泡的例子,将完整组织的亚细胞细胞器的复杂组织可视化,并将其置于细胞结构背景下。我们的研究结果表明,扩展显微镜可以用于提高有效成像分辨率的拟南芥根标本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution expansion microscopy in plant roots
Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants’ challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample. However, its application to plants has been hindered by the rigid, mechanically cohesive structure of plant tissues. Here, we report on whole-mount expansion microscopy of thale cress (Arabidopsis thaliana) root tissues (PlantEx), achieving a four-fold resolution increase over conventional microscopy. Our results highlight the microtubule cytoskeleton organization and interaction between molecularly defined cellular constituents. Combining PlantEx with stimulated emission depletion (STED) microscopy, we increase nanoscale resolution and visualize the complex organization of subcellular organelles from intact tissues by example of the densely packed COPI-coated vesicles associated with the Golgi apparatus and put these into a cellular structural context. Our results show that expansion microscopy can be applied to increase effective imaging resolution in Arabidopsis root specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiomics integration unveils photoperiodic plasticity in the molecular rhythms of marine phytoplankton Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2 Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2 The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1