Nathan D Maulding, Jun Zou, Wei Zhou, Ciara Metcalfe, Joshua M Stuart, Xin Ye, Marc Hafner
{"title":"基于变压器的克隆选择和表达动力学建模揭示了乳腺癌的耐药机制。","authors":"Nathan D Maulding, Jun Zou, Wei Zhou, Ciara Metcalfe, Joshua M Stuart, Xin Ye, Marc Hafner","doi":"10.1038/s41540-024-00485-8","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured by in vitro studies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the time points at which they are associated with clonal selection. When applied to cells treated with either giredestrant, a selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, pathways dynamically associated with resistance are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance - an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating features with phenotypes in a time-dependent manner from scRNA-seq data.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"5"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transformer-based modeling of Clonal Selection and Expression Dynamics reveals resistance mechanisms in breast cancer.\",\"authors\":\"Nathan D Maulding, Jun Zou, Wei Zhou, Ciara Metcalfe, Joshua M Stuart, Xin Ye, Marc Hafner\",\"doi\":\"10.1038/s41540-024-00485-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured by in vitro studies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the time points at which they are associated with clonal selection. When applied to cells treated with either giredestrant, a selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, pathways dynamically associated with resistance are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance - an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating features with phenotypes in a time-dependent manner from scRNA-seq data.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"5\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00485-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00485-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Transformer-based modeling of Clonal Selection and Expression Dynamics reveals resistance mechanisms in breast cancer.
Understanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured by in vitro studies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the time points at which they are associated with clonal selection. When applied to cells treated with either giredestrant, a selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, pathways dynamically associated with resistance are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance - an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating features with phenotypes in a time-dependent manner from scRNA-seq data.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.