Chao Lin, Shuhei Abe, Shitao Zheng, Xianfeng Li, Pang-jo Chun
{"title":"面向结构的桥梁点云自动语义分割损失函数","authors":"Chao Lin, Shuhei Abe, Shitao Zheng, Xianfeng Li, Pang-jo Chun","doi":"10.1111/mice.13422","DOIUrl":null,"url":null,"abstract":"Focusing on learning-based semantic segmentation (SS) methods for bridge point cloud data (PCD), this study proposes a structure-oriented concept (SOC) with training focused on the spatial distribution patterns of bridge components, including both the horizontally absolute location of each component and its vertically relative position compared with other components. Then a structure-oriented loss (SOL) function, which embodies the core of SOC, is defined accordingly, and it is compared to five cutting-edge loss functions on a collected bridge PCD dataset. In contrast to the limitations of other loss functions, SOL significantly improves the overall evaluation metrics of overall accuracy (6.53%) and mean intersection over union (mean IoU: 8.67%). The IoU of the category “others” is improved by 8.44%, which is very important for automating the time-consuming denoising process. Furthermore, the demonstrated robustness of SOC and SOL reveal great potential to improve the performance of other SS models.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"9 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structure-oriented loss function for automated semantic segmentation of bridge point clouds\",\"authors\":\"Chao Lin, Shuhei Abe, Shitao Zheng, Xianfeng Li, Pang-jo Chun\",\"doi\":\"10.1111/mice.13422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on learning-based semantic segmentation (SS) methods for bridge point cloud data (PCD), this study proposes a structure-oriented concept (SOC) with training focused on the spatial distribution patterns of bridge components, including both the horizontally absolute location of each component and its vertically relative position compared with other components. Then a structure-oriented loss (SOL) function, which embodies the core of SOC, is defined accordingly, and it is compared to five cutting-edge loss functions on a collected bridge PCD dataset. In contrast to the limitations of other loss functions, SOL significantly improves the overall evaluation metrics of overall accuracy (6.53%) and mean intersection over union (mean IoU: 8.67%). The IoU of the category “others” is improved by 8.44%, which is very important for automating the time-consuming denoising process. Furthermore, the demonstrated robustness of SOC and SOL reveal great potential to improve the performance of other SS models.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13422\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13422","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A structure-oriented loss function for automated semantic segmentation of bridge point clouds
Focusing on learning-based semantic segmentation (SS) methods for bridge point cloud data (PCD), this study proposes a structure-oriented concept (SOC) with training focused on the spatial distribution patterns of bridge components, including both the horizontally absolute location of each component and its vertically relative position compared with other components. Then a structure-oriented loss (SOL) function, which embodies the core of SOC, is defined accordingly, and it is compared to five cutting-edge loss functions on a collected bridge PCD dataset. In contrast to the limitations of other loss functions, SOL significantly improves the overall evaluation metrics of overall accuracy (6.53%) and mean intersection over union (mean IoU: 8.67%). The IoU of the category “others” is improved by 8.44%, which is very important for automating the time-consuming denoising process. Furthermore, the demonstrated robustness of SOC and SOL reveal great potential to improve the performance of other SS models.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.