从分割到“分化”:为了理解木材在时间尺度上的生长,我们需要(学会)操纵它

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2025-01-12 DOI:10.1111/nph.20390
Valentina Buttò, Drew M. P. Peltier, Tim Rademacher
{"title":"从分割到“分化”:为了理解木材在时间尺度上的生长,我们需要(学会)操纵它","authors":"Valentina Buttò, Drew M. P. Peltier, Tim Rademacher","doi":"10.1111/nph.20390","DOIUrl":null,"url":null,"abstract":"Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability. But these fields operate on different timescales, making it challenging to predict how short (e.g. turgor) and long timescale processes (e.g. disturbance) interactively influence wood formation. Toward this challenge, wood growth responses to natural climate events provide useful but incomplete explanations of tree growth variability. By contrast, direct manipulations of the tree vascular system have yielded unexpected insights, particularly outside of model species like boreal conifers, but they remain underutilized. To improve prediction of global wood formation, we argue for a new generation of experimental manipulations of wood growth across seasons, species, and ecosystems. Such manipulations should expand inference to diverse forests and capture inter- and intra-specific differences in wood growth. We summarize the endogenous and exogenous factors influencing wood formation to guide future experimental design and hypotheses. We highlight key opportunities for manipulative studies integrating measurements from xylogenesis, dendroanatomy, dendroecology, and ecophysiology.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"155 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From division to ‘divergence’: to understand wood growth across timescales, we need to (learn to) manipulate it\",\"authors\":\"Valentina Buttò, Drew M. P. Peltier, Tim Rademacher\",\"doi\":\"10.1111/nph.20390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability. But these fields operate on different timescales, making it challenging to predict how short (e.g. turgor) and long timescale processes (e.g. disturbance) interactively influence wood formation. Toward this challenge, wood growth responses to natural climate events provide useful but incomplete explanations of tree growth variability. By contrast, direct manipulations of the tree vascular system have yielded unexpected insights, particularly outside of model species like boreal conifers, but they remain underutilized. To improve prediction of global wood formation, we argue for a new generation of experimental manipulations of wood growth across seasons, species, and ecosystems. Such manipulations should expand inference to diverse forests and capture inter- and intra-specific differences in wood growth. We summarize the endogenous and exogenous factors influencing wood formation to guide future experimental design and hypotheses. We highlight key opportunities for manipulative studies integrating measurements from xylogenesis, dendroanatomy, dendroecology, and ecophysiology.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20390\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20390","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

木材的形成是树木生理学的罗塞塔石碑:一种可追溯的、完整的生理和形态状态记录。它还产生了一个巨大而持久的陆地碳年汇,促进了预测性的理解。木质学研究极大地扩展了我们对木材形成的年内控制的认识,而树木生态学则量化了多年变化的环境驱动因素。但是这些领域在不同的时间尺度上运作,使得预测短期(例如膨胀)和长期(例如干扰)过程如何相互影响木材形成具有挑战性。面对这一挑战,木材生长对自然气候事件的响应提供了有用但不完整的树木生长变异性解释。相比之下,对树木维管系统的直接操作已经产生了意想不到的见解,特别是在北方针叶树等模式物种之外,但它们仍未得到充分利用。为了提高对全球木材形成的预测,我们主张对木材生长进行跨季节、物种和生态系统的新一代实验操作。这种操作应扩大对不同森林的推断,并捕捉木材生长的种间和种内差异。我们总结了影响木材形成的内源和外源因素,以指导未来的实验设计和假设。我们强调了整合木本发生、树木解剖学、树木生态学和生态生理学测量的关键操作研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From division to ‘divergence’: to understand wood growth across timescales, we need to (learn to) manipulate it
Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability. But these fields operate on different timescales, making it challenging to predict how short (e.g. turgor) and long timescale processes (e.g. disturbance) interactively influence wood formation. Toward this challenge, wood growth responses to natural climate events provide useful but incomplete explanations of tree growth variability. By contrast, direct manipulations of the tree vascular system have yielded unexpected insights, particularly outside of model species like boreal conifers, but they remain underutilized. To improve prediction of global wood formation, we argue for a new generation of experimental manipulations of wood growth across seasons, species, and ecosystems. Such manipulations should expand inference to diverse forests and capture inter- and intra-specific differences in wood growth. We summarize the endogenous and exogenous factors influencing wood formation to guide future experimental design and hypotheses. We highlight key opportunities for manipulative studies integrating measurements from xylogenesis, dendroanatomy, dendroecology, and ecophysiology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
The asymmetry engine: how plants harness asymmetries to shape their bodies Metabolic modeling identifies determinants of thermal growth responses in Arabidopsis thaliana Glycoside-specific metabolomics reveals the novel mechanism of glycinebetaine-induced cold tolerance by regulating apigenin glycosylation in tea plants When lettuce bolts: natural selection vs artificial selection and beyond Proximal remote sensing: an essential tool for bridging the gap between high-resolution ecosystem monitoring and global ecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1