QOMIC:用于图案识别的量子优化。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-12-24 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae208
Hoang M Ngo, Tamim Khatib, My T Thai, Tamer Kahveci
{"title":"QOMIC:用于图案识别的量子优化。","authors":"Hoang M Ngo, Tamim Khatib, My T Thai, Tamer Kahveci","doi":"10.1093/bioadv/vbae208","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers. In this article, we develop the first quantum solution, called QOMIC (Quantum Optimization for Motif IdentifiCation), to the MI problem. QOMIC transforms the MI problem using a integer model, which serves as the foundation to develop our quantum solution. We develop and implement the quantum circuit to find motif locations in the given network using this model.</p><p><strong>Results: </strong>Our experiments demonstrate that QOMIC outperforms the existing solutions developed for the classical computer, in term of motif counts. We also observe that QOMIC can efficiently find motifs in human regulatory networks associated with five neurodegenerative diseases: Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Motor Neurone Disease.</p><p><strong>Availability and implementation: </strong>Our implementation can be found in https://github.com/ngominhhoang/Quantum-Motif-Identification.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae208"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725347/pdf/","citationCount":"0","resultStr":"{\"title\":\"QOMIC: quantum optimization for motif identification.\",\"authors\":\"Hoang M Ngo, Tamim Khatib, My T Thai, Tamer Kahveci\",\"doi\":\"10.1093/bioadv/vbae208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers. In this article, we develop the first quantum solution, called QOMIC (Quantum Optimization for Motif IdentifiCation), to the MI problem. QOMIC transforms the MI problem using a integer model, which serves as the foundation to develop our quantum solution. We develop and implement the quantum circuit to find motif locations in the given network using this model.</p><p><strong>Results: </strong>Our experiments demonstrate that QOMIC outperforms the existing solutions developed for the classical computer, in term of motif counts. We also observe that QOMIC can efficiently find motifs in human regulatory networks associated with five neurodegenerative diseases: Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Motor Neurone Disease.</p><p><strong>Availability and implementation: </strong>Our implementation can be found in https://github.com/ngominhhoang/Quantum-Motif-Identification.git.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbae208\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725347/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QOMIC: quantum optimization for motif identification.

Motivation: Network motif identification (MI) problem aims to find topological patterns in biological networks. Identifying disjoint motifs is a computationally challenging problem using classical computers. Quantum computers enable solving high complexity problems which do not scale using classical computers. In this article, we develop the first quantum solution, called QOMIC (Quantum Optimization for Motif IdentifiCation), to the MI problem. QOMIC transforms the MI problem using a integer model, which serves as the foundation to develop our quantum solution. We develop and implement the quantum circuit to find motif locations in the given network using this model.

Results: Our experiments demonstrate that QOMIC outperforms the existing solutions developed for the classical computer, in term of motif counts. We also observe that QOMIC can efficiently find motifs in human regulatory networks associated with five neurodegenerative diseases: Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Motor Neurone Disease.

Availability and implementation: Our implementation can be found in https://github.com/ngominhhoang/Quantum-Motif-Identification.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1