子宫内膜异位症中铁下垂和免疫滤过相互作用的转录组学分析及新治疗靶点的鉴定。

Sonia Chadha
{"title":"子宫内膜异位症中铁下垂和免疫滤过相互作用的转录组学分析及新治疗靶点的鉴定。","authors":"Sonia Chadha","doi":"10.1016/j.compbiolchem.2025.108343","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16-5p and hsa-miR-17-5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108343"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets.\",\"authors\":\"Sonia Chadha\",\"doi\":\"10.1016/j.compbiolchem.2025.108343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16-5p and hsa-miR-17-5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"115 \",\"pages\":\"108343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2025.108343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜异位症是一种炎症性疾病,涉及免疫细胞浸润和炎症介质的产生。最近,人们认识到铁蜕变是一种可控的细胞死亡模式,而异位子宫内膜中普遍存在的铁超载和过氧化环境促进了铁蜕变的发生。使用 CIBERSORTx 工具分析了子宫内膜异位症样本和正常组织样本中免疫细胞浸润的变化,结果显示子宫内膜异位症组织样本中 T 细胞 gamma delta、巨噬细胞 M2、B 细胞幼稚型、T 细胞 CD4 记忆静息细胞、浆细胞、T 细胞 CD8 和肥大细胞活化型的浸润较高。差异表达基因(DEGs)与铁蛋白沉积相关基因的重叠发现了 32 个铁蛋白沉积相关 DEGs(FR-DEGs)。GO和KEGG通路分析表明,FR-DEGs富集于铁沉着病。构建了 FR-DEGs 的 PPI 网络,并确定 TP53、HMOX1、CAV1、CDKN1A、CD44、EPAS1、SLC2A1、MAP3K5、GCLC 和 FANCD2 为枢纽基因。皮尔逊相关性表明,子宫内膜异位症中的中枢基因与浸润免疫细胞之间存在着显著的相关性,从而表明子宫内膜异位症中的免疫反应与铁沉着之间存在着调节串扰。中枢基因-miRNA网络分析显示,10个中枢基因中有7个是3个miRNA-hsa-miR-20a-5p、hsa-miR-16-5p和hsa-miR-17-5p的靶标,从而进一步揭示了疾病进展的调控机制。预测分析和交叉验证研究发现 TP53 和 CDKN1A 是 hsa-miR-16-5p、hsa-miR-17-5p 和 hsa-miR-20a-5p 的共同靶点,从而揭示了它们在子宫内膜异位症相关的铁变态反应和免疫调节通路中的调控作用。本研究表明,免疫调节失调和铁蛋白沉积在子宫内膜异位症的发病机制中起着重要作用,并确定了与铁蛋白沉积相关的枢纽基因及其 miRNA 调控因子是进一步研究和治疗干预的有利新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets.

Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16-5p and hsa-miR-17-5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational investigation of graphyne monolayer as a promising carrier for anticancer drug delivery. Machine learning and molecular subtyping reveal the impact of diverse patterns of cell death on the prognosis and treatment of hepatocellular carcinoma. In silico analysis of novel Triacontafluoropentadec-1-ene as a sustainable replacement for dodecane in fisheries microplastics: Molecular docking, dynamics simulation and pharmacophore studies of acetylcholinesterase activity. Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1