{"title":"IgG sialylation 使肺部炎症得到缓解","authors":"Lukasz Kedzierski, Katherine Kedzierska","doi":"10.1016/j.immuni.2024.12.001","DOIUrl":null,"url":null,"abstract":"The mechanisms underpinning susceptibility to influenza virus infection, resulting in life-threatening disease, are not well understood. In this issue of <em>Immunity</em>, Chakraborty et al. demonstrate that sialylated IgG suppresses NF-κB-driven inflammatory responses in the lungs by inducing repressor element-1 silencing transcription factor (REST) to prevent excessive inflammation without impacting viral replication.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"90 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IgG sialylation puts lung inflammation to REST\",\"authors\":\"Lukasz Kedzierski, Katherine Kedzierska\",\"doi\":\"10.1016/j.immuni.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanisms underpinning susceptibility to influenza virus infection, resulting in life-threatening disease, are not well understood. In this issue of <em>Immunity</em>, Chakraborty et al. demonstrate that sialylated IgG suppresses NF-κB-driven inflammatory responses in the lungs by inducing repressor element-1 silencing transcription factor (REST) to prevent excessive inflammation without impacting viral replication.\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.12.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.12.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The mechanisms underpinning susceptibility to influenza virus infection, resulting in life-threatening disease, are not well understood. In this issue of Immunity, Chakraborty et al. demonstrate that sialylated IgG suppresses NF-κB-driven inflammatory responses in the lungs by inducing repressor element-1 silencing transcription factor (REST) to prevent excessive inflammation without impacting viral replication.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.