范德瓦尔斯间隙支持 MoS2 浮栅存储器的稳健保持,实现逻辑内存操作

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-14 DOI:10.1002/adfm.202422120
Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao
{"title":"范德瓦尔斯间隙支持 MoS2 浮栅存储器的稳健保持,实现逻辑内存操作","authors":"Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao","doi":"10.1002/adfm.202422120","DOIUrl":null,"url":null,"abstract":"Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS<sub>2</sub> FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS<sub>2</sub> flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS<sub>2</sub> FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm<sup>−1</sup>), excellent retention capability &gt;10<sup>5</sup> s, high on/off ratio of 10<sup>7</sup>, and desirable cycling endurance performance (&gt;1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"74 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations\",\"authors\":\"Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao\",\"doi\":\"10.1002/adfm.202422120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS<sub>2</sub> FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS<sub>2</sub> flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS<sub>2</sub> FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm<sup>−1</sup>), excellent retention capability &gt;10<sup>5</sup> s, high on/off ratio of 10<sup>7</sup>, and desirable cycling endurance performance (&gt;1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202422120\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422120","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations
Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS2 FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS2 flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS2 FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm−1), excellent retention capability >105 s, high on/off ratio of 107, and desirable cycling endurance performance (>1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Liquid Water Molecular Connected Quantum Dots for Self-Driven Photodetector Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries Hierarchical Composite Polyimide Aerogels with Hyperbranched Siloxane for High Electromagnetic Wave Absorption Phosphorus-Mediated Selenium Dual Atoms for Bifunctional Oxygen Reactions and Long-Life Low-Temperature Energy Conversion Electrically Detachable and Fully Recyclable Pressure Sensitive Ionoadhesive Tapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1