Yuxin Pei, Lin Chen, Yihang Zhao, Qian Lei, Yongzhen Yang, Jie Hu, Xuguang Liu
{"title":"贵金属复合材料免疫传感器检测降钙素原的研究进展","authors":"Yuxin Pei, Lin Chen, Yihang Zhao, Qian Lei, Yongzhen Yang, Jie Hu, Xuguang Liu","doi":"10.1007/s00604-025-06953-0","DOIUrl":null,"url":null,"abstract":"<div><p>Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits. Noble metals, because of their excellent electronic conductivity, biocompatibility, and superior physicochemical properties, are extensively combined with other materials to play a pivotal role in the construction of PCT immunosensors. This review summarizes the research progress on PCT antigen immunosensors based on noble metal composite materials, encompassing the classification and principles of immunosensors. Starting from noble metals, which are widely used as electrode materials in sensors, the review categorizes and discusses the carbon materials, metal oxides, metal sulfides, and other composites with noble metals. The review also elaborates on the influence of sensitive materials on the performance of immunosensors. Finally, the review discusses and anticipates the challenges and future opportunities for the research on PCT antigen immunosensors using noble metal-composite nanomaterials, providing new insights and directions for their application in the treatment and clinical management of sepsis and other diseases.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-06953-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances of immunosensors based on noble metal composite materials for detecting procalcitonin\",\"authors\":\"Yuxin Pei, Lin Chen, Yihang Zhao, Qian Lei, Yongzhen Yang, Jie Hu, Xuguang Liu\",\"doi\":\"10.1007/s00604-025-06953-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits. Noble metals, because of their excellent electronic conductivity, biocompatibility, and superior physicochemical properties, are extensively combined with other materials to play a pivotal role in the construction of PCT immunosensors. This review summarizes the research progress on PCT antigen immunosensors based on noble metal composite materials, encompassing the classification and principles of immunosensors. Starting from noble metals, which are widely used as electrode materials in sensors, the review categorizes and discusses the carbon materials, metal oxides, metal sulfides, and other composites with noble metals. The review also elaborates on the influence of sensitive materials on the performance of immunosensors. Finally, the review discusses and anticipates the challenges and future opportunities for the research on PCT antigen immunosensors using noble metal-composite nanomaterials, providing new insights and directions for their application in the treatment and clinical management of sepsis and other diseases.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 2\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00604-025-06953-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-06953-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-06953-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advances of immunosensors based on noble metal composite materials for detecting procalcitonin
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits. Noble metals, because of their excellent electronic conductivity, biocompatibility, and superior physicochemical properties, are extensively combined with other materials to play a pivotal role in the construction of PCT immunosensors. This review summarizes the research progress on PCT antigen immunosensors based on noble metal composite materials, encompassing the classification and principles of immunosensors. Starting from noble metals, which are widely used as electrode materials in sensors, the review categorizes and discusses the carbon materials, metal oxides, metal sulfides, and other composites with noble metals. The review also elaborates on the influence of sensitive materials on the performance of immunosensors. Finally, the review discusses and anticipates the challenges and future opportunities for the research on PCT antigen immunosensors using noble metal-composite nanomaterials, providing new insights and directions for their application in the treatment and clinical management of sepsis and other diseases.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.