Helen Gorges, Elena Serbe, Alexander Kovalev, Stanislav N Gorb
{"title":"果胶和纤维素对种子胶浆力学和粘接性能的影响。","authors":"Helen Gorges, Elena Serbe, Alexander Kovalev, Stanislav N Gorb","doi":"10.1093/jxb/eraf014","DOIUrl":null,"url":null,"abstract":"<p><p>Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax). We used light and scanning electron microscopy to confirm partial pectin removal and intact cellulose fibers. Pull-off force measurements revealed similar wet adhesive properties and E-moduli in S. hispanica and C. grandiflora seeds before and after pectin removal. L. usitatissimum seeds, lacking cellulose fibers, exhibited significantly lower wet and dry adhesion forces post-pectin removal. Desiccation dynamics showed shorter desiccation times after pectin removal in all three species. Results indicated that adhesion forces in seed mucilage with cellulose fibers did not change significantly after pectin removal, suggesting that cellulose fibers contribute to the adhesive properties of seed mucilage, while pectins might not play an exclusive role in adhering to surfaces.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of pectins and cellulose in the mechanical and adhesive properties of seed mucilage.\",\"authors\":\"Helen Gorges, Elena Serbe, Alexander Kovalev, Stanislav N Gorb\",\"doi\":\"10.1093/jxb/eraf014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax). We used light and scanning electron microscopy to confirm partial pectin removal and intact cellulose fibers. Pull-off force measurements revealed similar wet adhesive properties and E-moduli in S. hispanica and C. grandiflora seeds before and after pectin removal. L. usitatissimum seeds, lacking cellulose fibers, exhibited significantly lower wet and dry adhesion forces post-pectin removal. Desiccation dynamics showed shorter desiccation times after pectin removal in all three species. Results indicated that adhesion forces in seed mucilage with cellulose fibers did not change significantly after pectin removal, suggesting that cellulose fibers contribute to the adhesive properties of seed mucilage, while pectins might not play an exclusive role in adhering to surfaces.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The influence of pectins and cellulose in the mechanical and adhesive properties of seed mucilage.
Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax). We used light and scanning electron microscopy to confirm partial pectin removal and intact cellulose fibers. Pull-off force measurements revealed similar wet adhesive properties and E-moduli in S. hispanica and C. grandiflora seeds before and after pectin removal. L. usitatissimum seeds, lacking cellulose fibers, exhibited significantly lower wet and dry adhesion forces post-pectin removal. Desiccation dynamics showed shorter desiccation times after pectin removal in all three species. Results indicated that adhesion forces in seed mucilage with cellulose fibers did not change significantly after pectin removal, suggesting that cellulose fibers contribute to the adhesive properties of seed mucilage, while pectins might not play an exclusive role in adhering to surfaces.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.