以发酵养蚕废弃物为食的黑实蝇(Hermitia illucens)幼虫的肠道微生物群落和转录谱图。

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-01-12 DOI:10.1016/j.wasman.2025.01.011
Fareed Uddin Memon, Yanqing Zhu, Ying Cui, Xingbao Feng, Sheraz Ahmad, Peng Zeng, Farhan Nabi, Dengjian Hao, Zhijun Huang, Gianluca Tettamanti, Ling Tian
{"title":"以发酵养蚕废弃物为食的黑实蝇(Hermitia illucens)幼虫的肠道微生物群落和转录谱图。","authors":"Fareed Uddin Memon, Yanqing Zhu, Ying Cui, Xingbao Feng, Sheraz Ahmad, Peng Zeng, Farhan Nabi, Dengjian Hao, Zhijun Huang, Gianluca Tettamanti, Ling Tian","doi":"10.1016/j.wasman.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms. Our results showed that all fermented sericulture waste groups had positive effects on body weight, survival rate, substrate consumption rate, and substrate conversion rate. Metagenomic analysis revealed a notable increase in the abundances of commensal genera, including Sedimentibacter, Clostridium, Enterococcus, Bacteroides, and Bacillus, in the gut of BSFL fed on sericulture waste fermented with the most effective combination of microbial strains (B. subtilis, B. licheniformis, and E. faecalis). In contrast, BSFL reared on unfermented sericulture waste exhibited higher abundances of potentially pathogenic and harmful genera, including Providencia, Klebsiella, Escherichia, Brucella, and Enterobacter. Clusters of orthologous genes (COG) analysis indicated that altered microbial communities in the fermented group mainly participated in metabolic pathways, defense mechanism, and signal transduction mechanism. Transcriptome analysis further revealed that the upregulated genes were functionally associated with key metabolic pathways and immune mechanisms in the fermented group. These findings underscore the pivotal role of selected microbial fermentation in utilizing sericulture waste as BSFL feed, providing a sustainable solution for organic waste management.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"158-168"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.\",\"authors\":\"Fareed Uddin Memon, Yanqing Zhu, Ying Cui, Xingbao Feng, Sheraz Ahmad, Peng Zeng, Farhan Nabi, Dengjian Hao, Zhijun Huang, Gianluca Tettamanti, Ling Tian\",\"doi\":\"10.1016/j.wasman.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms. Our results showed that all fermented sericulture waste groups had positive effects on body weight, survival rate, substrate consumption rate, and substrate conversion rate. Metagenomic analysis revealed a notable increase in the abundances of commensal genera, including Sedimentibacter, Clostridium, Enterococcus, Bacteroides, and Bacillus, in the gut of BSFL fed on sericulture waste fermented with the most effective combination of microbial strains (B. subtilis, B. licheniformis, and E. faecalis). In contrast, BSFL reared on unfermented sericulture waste exhibited higher abundances of potentially pathogenic and harmful genera, including Providencia, Klebsiella, Escherichia, Brucella, and Enterobacter. Clusters of orthologous genes (COG) analysis indicated that altered microbial communities in the fermented group mainly participated in metabolic pathways, defense mechanism, and signal transduction mechanism. Transcriptome analysis further revealed that the upregulated genes were functionally associated with key metabolic pathways and immune mechanisms in the fermented group. These findings underscore the pivotal role of selected microbial fermentation in utilizing sericulture waste as BSFL feed, providing a sustainable solution for organic waste management.</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"194 \",\"pages\":\"158-168\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2025.01.011\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2025.01.011","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms. Our results showed that all fermented sericulture waste groups had positive effects on body weight, survival rate, substrate consumption rate, and substrate conversion rate. Metagenomic analysis revealed a notable increase in the abundances of commensal genera, including Sedimentibacter, Clostridium, Enterococcus, Bacteroides, and Bacillus, in the gut of BSFL fed on sericulture waste fermented with the most effective combination of microbial strains (B. subtilis, B. licheniformis, and E. faecalis). In contrast, BSFL reared on unfermented sericulture waste exhibited higher abundances of potentially pathogenic and harmful genera, including Providencia, Klebsiella, Escherichia, Brucella, and Enterobacter. Clusters of orthologous genes (COG) analysis indicated that altered microbial communities in the fermented group mainly participated in metabolic pathways, defense mechanism, and signal transduction mechanism. Transcriptome analysis further revealed that the upregulated genes were functionally associated with key metabolic pathways and immune mechanisms in the fermented group. These findings underscore the pivotal role of selected microbial fermentation in utilizing sericulture waste as BSFL feed, providing a sustainable solution for organic waste management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Evaluating drivers of PM2.5 air pollution at urban scales using interpretable machine learning. Machine learning-assisted assessment of municipal solid waste thermal treatment efficacy via rapid image recognition and visual analysis. Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste. A pose estimation approach for discarded stacked smartphones recycling: Based on instance segmentation and point cloud registration. Identification of waste lithium-ion battery cell chemistry for recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1