Maynard Enoc Limbaco, Franklin Ugsod Toledo, Renna Mae Velez Tondo, Salasa Aguiwat Nawang
{"title":"基于Geant4应用于断层发射(GATE)的6 MV紧凑型直线加速器的蒙特卡罗仿真建模与验证。","authors":"Maynard Enoc Limbaco, Franklin Ugsod Toledo, Renna Mae Velez Tondo, Salasa Aguiwat Nawang","doi":"10.1088/2057-1976/ada9ef","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To accurately model and validate the 6 MV Elekta Compact<sup>TM</sup>linear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation.
Methods: Simulation of the Elekta Compact<sup>TM</sup>6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.9.1. A 50 cm x 50 cm x 50 cm water phantom was irradiated with a source-to-surface distance of 100 cm. Percentage Depth Dose Profile (PDD) and Lateral Dose Profile (Crossplane and Inplane) were assessed as reference dose measurements. The half-length field difference (FHLD) method was introduced to optimize the jaw collimator setup. Gamma index analysis was used to quantitatively assess the accuracy of the simulated dosimetry data in relation to the actual dose measurements.
Results: Crucial parameters of the Linac Head have been successfully optimized. The validation achieved Gamma-Index acceptance rates of 97.93% for the Depth Dose profile, 100% for the Crossplane (X) Dose Profile, and 93.98% for the Inplane (Y) Dose Profile, all meeting the 1%/1mm Gamma-Index criteria.
Conclusion: The simulation and calibration of the Elekta Compact<sup>TM</sup>Linac have achieved a reliable model with high fidelity in dosimetry calculations which could pave the way for the future development and application of new techniques using Elekta Compact<sup>TM</sup>Linear Accelerator.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and Validation of a 6 MV Compact Linear Accelerator via Monte Carlo Simulation using Geant4 Application for Tomographic Emission (GATE).\",\"authors\":\"Maynard Enoc Limbaco, Franklin Ugsod Toledo, Renna Mae Velez Tondo, Salasa Aguiwat Nawang\",\"doi\":\"10.1088/2057-1976/ada9ef\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To accurately model and validate the 6 MV Elekta Compact<sup>TM</sup>linear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation.
Methods: Simulation of the Elekta Compact<sup>TM</sup>6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.9.1. A 50 cm x 50 cm x 50 cm water phantom was irradiated with a source-to-surface distance of 100 cm. Percentage Depth Dose Profile (PDD) and Lateral Dose Profile (Crossplane and Inplane) were assessed as reference dose measurements. The half-length field difference (FHLD) method was introduced to optimize the jaw collimator setup. Gamma index analysis was used to quantitatively assess the accuracy of the simulated dosimetry data in relation to the actual dose measurements.
Results: Crucial parameters of the Linac Head have been successfully optimized. The validation achieved Gamma-Index acceptance rates of 97.93% for the Depth Dose profile, 100% for the Crossplane (X) Dose Profile, and 93.98% for the Inplane (Y) Dose Profile, all meeting the 1%/1mm Gamma-Index criteria.
Conclusion: The simulation and calibration of the Elekta Compact<sup>TM</sup>Linac have achieved a reliable model with high fidelity in dosimetry calculations which could pave the way for the future development and application of new techniques using Elekta Compact<sup>TM</sup>Linear Accelerator.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ada9ef\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada9ef","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Modelling and Validation of a 6 MV Compact Linear Accelerator via Monte Carlo Simulation using Geant4 Application for Tomographic Emission (GATE).
Objective: To accurately model and validate the 6 MV Elekta CompactTMlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation.
Methods: Simulation of the Elekta CompactTM6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.9.1. A 50 cm x 50 cm x 50 cm water phantom was irradiated with a source-to-surface distance of 100 cm. Percentage Depth Dose Profile (PDD) and Lateral Dose Profile (Crossplane and Inplane) were assessed as reference dose measurements. The half-length field difference (FHLD) method was introduced to optimize the jaw collimator setup. Gamma index analysis was used to quantitatively assess the accuracy of the simulated dosimetry data in relation to the actual dose measurements.
Results: Crucial parameters of the Linac Head have been successfully optimized. The validation achieved Gamma-Index acceptance rates of 97.93% for the Depth Dose profile, 100% for the Crossplane (X) Dose Profile, and 93.98% for the Inplane (Y) Dose Profile, all meeting the 1%/1mm Gamma-Index criteria.
Conclusion: The simulation and calibration of the Elekta CompactTMLinac have achieved a reliable model with high fidelity in dosimetry calculations which could pave the way for the future development and application of new techniques using Elekta CompactTMLinear Accelerator.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.