低毒纳米量子点温度计和倒谱空间定位算法重建肿瘤细胞局部三维温度场。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-01-22 DOI:10.1088/2057-1976/ada9ee
Jun Yang, Lingyu Huang, HanLiang Du, Lei Zhang, Ben Q Li, Mutian Xu
{"title":"低毒纳米量子点温度计和倒谱空间定位算法重建肿瘤细胞局部三维温度场。","authors":"Jun Yang, Lingyu Huang, HanLiang Du, Lei Zhang, Ben Q Li, Mutian Xu","doi":"10.1088/2057-1976/ada9ee","DOIUrl":null,"url":null,"abstract":"<p><p>The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells. This study synthesizes a low-toxicity cell membrane-targeted quantum dot temperature sensor by optimizing the synthesis method of CdTe/CdS/ZnS core-shell structured quantum dots. Compared to CdTe-targeted quantum dot temperature sensors, the cytotoxicity of CdTe/CdS/ZnS-targeted quantum dot temperature sensors is reduced by 40.79%. Additionally, a novel cepstrum-based spatial localization algorithm is proposed to achieve rapidly compute the three-dimensional positions of densely distributed quantum dot temperature sensors. Ultimately, both targeted and non-targeted CdTe/CdS/ZnS quantum dot temperature sensors were used simultaneously to label the internal and external regions of human osteosarcoma cells to obtain temperature data at these labeling positions. By combining this with the cepstrum-based spatial localization algorithm, the spatial coordinates of the quantum dot temperature sensors were obtained. Three-dimensional temperature field reconstruction of three local regions was achieved within a 12 μm axial range in living cells. The method described in this paper can be widely applied to the quantitative study of intracellular thermal responses.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of local three-dimensional temperature field of tumor cells with low-toxic nanoscale quantum-dot thermometer and cepstrum spatial localization algorithm.\",\"authors\":\"Jun Yang, Lingyu Huang, HanLiang Du, Lei Zhang, Ben Q Li, Mutian Xu\",\"doi\":\"10.1088/2057-1976/ada9ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells. This study synthesizes a low-toxicity cell membrane-targeted quantum dot temperature sensor by optimizing the synthesis method of CdTe/CdS/ZnS core-shell structured quantum dots. Compared to CdTe-targeted quantum dot temperature sensors, the cytotoxicity of CdTe/CdS/ZnS-targeted quantum dot temperature sensors is reduced by 40.79%. Additionally, a novel cepstrum-based spatial localization algorithm is proposed to achieve rapidly compute the three-dimensional positions of densely distributed quantum dot temperature sensors. Ultimately, both targeted and non-targeted CdTe/CdS/ZnS quantum dot temperature sensors were used simultaneously to label the internal and external regions of human osteosarcoma cells to obtain temperature data at these labeling positions. By combining this with the cepstrum-based spatial localization algorithm, the spatial coordinates of the quantum dot temperature sensors were obtained. Three-dimensional temperature field reconstruction of three local regions was achieved within a 12 μm axial range in living cells. The method described in this paper can be widely applied to the quantitative study of intracellular thermal responses.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ada9ee\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada9ee","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

细胞内三维热成像的最佳方法是收集细胞内温度响应,同时获得相应的三维位置信息。目前基于量子点光热特性的温度测量技术面临着一些限制,包括高细胞毒性和低荧光量子产率。这些问题影响肿瘤细胞的正常代谢过程。本研究通过优化CdTe/CdS/ZnS核壳结构量子点的合成方法,合成了一种低毒性的细胞膜靶向量子点温度传感器。与CdTe靶向量子点温度传感器相比,CdTe/CdS/ zns靶向量子点温度传感器的细胞毒性降低了40.79%。此外,提出了一种新的基于倒谱的空间定位算法,实现了密集分布量子点温度传感器三维位置的快速计算。最后,同时使用靶向和非靶向CdTe/CdS/ZnS量子点温度传感器对人骨肉瘤细胞的内部和外部区域进行标记,获得这些标记位置的温度数据。将该方法与基于倒谱的空间定位算法相结合,得到了量子点温度传感器的空间坐标。在活细胞的轴向12 μm范围内实现了三个局部区域的三维温度场重建。该方法可广泛应用于细胞内热反应的定量研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of local three-dimensional temperature field of tumor cells with low-toxic nanoscale quantum-dot thermometer and cepstrum spatial localization algorithm.

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells. This study synthesizes a low-toxicity cell membrane-targeted quantum dot temperature sensor by optimizing the synthesis method of CdTe/CdS/ZnS core-shell structured quantum dots. Compared to CdTe-targeted quantum dot temperature sensors, the cytotoxicity of CdTe/CdS/ZnS-targeted quantum dot temperature sensors is reduced by 40.79%. Additionally, a novel cepstrum-based spatial localization algorithm is proposed to achieve rapidly compute the three-dimensional positions of densely distributed quantum dot temperature sensors. Ultimately, both targeted and non-targeted CdTe/CdS/ZnS quantum dot temperature sensors were used simultaneously to label the internal and external regions of human osteosarcoma cells to obtain temperature data at these labeling positions. By combining this with the cepstrum-based spatial localization algorithm, the spatial coordinates of the quantum dot temperature sensors were obtained. Three-dimensional temperature field reconstruction of three local regions was achieved within a 12 μm axial range in living cells. The method described in this paper can be widely applied to the quantitative study of intracellular thermal responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation. External delay and dispersion correction of automatically sampled arterial blood with dual flow rates. Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1