拟南芥糖基转移酶UGT86A1促进植物适应盐和干旱胁迫。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70050
Yuqing Ma, Guangrui Dong, Shuman Zhao, Fengju Zhang, Xinmei Ma, Chonglin Liu, Yi Ding, Bingkai Hou
{"title":"拟南芥糖基转移酶UGT86A1促进植物适应盐和干旱胁迫。","authors":"Yuqing Ma, Guangrui Dong, Shuman Zhao, Fengju Zhang, Xinmei Ma, Chonglin Liu, Yi Ding, Bingkai Hou","doi":"10.1111/ppl.70050","DOIUrl":null,"url":null,"abstract":"<p><p>UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses. To explore the potential biological role of UGT86A1 in salt and drought stress response, we created ugt86a1 knockout mutants and UGT86A1-overexpressing transgenic lines, and analyzed seed germination, seedling development and root growth. The results showed that ugt86a1 mutants are sensitive to drought and salt stresses, while overexpression lines show stronger resistance compared with WT, confirming the positive regulation role of UGT86A1 in abiotic stress response. Our following study indicated that UGT86A1 enhances plant resistance against salt and drought stresses via increasing soluble sugar concentration and promoting ROS scavenging capacity, thereby reducing the damage to plant organs and cells. Moreover, we identified that UGT86A1 largely contributes to the upregulation of multiple stress-induced genes under salt and drought stress conditions. Therefore, our results demonstrated that UGT86A1 is a crucial responsive gene to salt and drought stresses in a land plant, thus promoting the understanding of the physiological significance of the UGT family in plant evolution.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70050"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.\",\"authors\":\"Yuqing Ma, Guangrui Dong, Shuman Zhao, Fengju Zhang, Xinmei Ma, Chonglin Liu, Yi Ding, Bingkai Hou\",\"doi\":\"10.1111/ppl.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses. To explore the potential biological role of UGT86A1 in salt and drought stress response, we created ugt86a1 knockout mutants and UGT86A1-overexpressing transgenic lines, and analyzed seed germination, seedling development and root growth. The results showed that ugt86a1 mutants are sensitive to drought and salt stresses, while overexpression lines show stronger resistance compared with WT, confirming the positive regulation role of UGT86A1 in abiotic stress response. Our following study indicated that UGT86A1 enhances plant resistance against salt and drought stresses via increasing soluble sugar concentration and promoting ROS scavenging capacity, thereby reducing the damage to plant organs and cells. Moreover, we identified that UGT86A1 largely contributes to the upregulation of multiple stress-induced genes under salt and drought stress conditions. Therefore, our results demonstrated that UGT86A1 is a crucial responsive gene to salt and drought stresses in a land plant, thus promoting the understanding of the physiological significance of the UGT family in plant evolution.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70050\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70050\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

udp -糖基转移酶(UGTs)是在植物进化过程中发展起来的最大的糖基转移酶家族。然而,它们在陆地植物适应非生物胁迫中的生理意义在很大程度上是未知的。在本研究中,我们从拟南芥(Arabidopsis thaliana)中鉴定了一个UGT86A1基因,该基因在盐胁迫和干旱胁迫下具有显著的诱导作用。为了探究UGT86A1在盐胁迫和干旱胁迫响应中的潜在生物学作用,我们构建了UGT86A1敲除突变体和过表达UGT86A1的转基因品系,并对其种子萌发、幼苗发育和根系生长进行了分析。结果表明,ugt86a1突变体对干旱和盐胁迫敏感,而过表达系的抗性较WT强,证实了ugt86a1在非生物胁迫响应中的正向调节作用。我们接下来的研究表明,UGT86A1通过提高可溶性糖浓度和促进活性氧清除能力来增强植物对盐和干旱胁迫的抗性,从而减少对植物器官和细胞的伤害。此外,我们发现在盐和干旱胁迫条件下,UGT86A1在很大程度上参与了多种胁迫诱导基因的上调。因此,我们的研究结果表明,UGT86A1是陆地植物对盐胁迫和干旱胁迫的重要响应基因,从而促进了对UGT家族在植物进化中的生理意义的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.

UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses. To explore the potential biological role of UGT86A1 in salt and drought stress response, we created ugt86a1 knockout mutants and UGT86A1-overexpressing transgenic lines, and analyzed seed germination, seedling development and root growth. The results showed that ugt86a1 mutants are sensitive to drought and salt stresses, while overexpression lines show stronger resistance compared with WT, confirming the positive regulation role of UGT86A1 in abiotic stress response. Our following study indicated that UGT86A1 enhances plant resistance against salt and drought stresses via increasing soluble sugar concentration and promoting ROS scavenging capacity, thereby reducing the damage to plant organs and cells. Moreover, we identified that UGT86A1 largely contributes to the upregulation of multiple stress-induced genes under salt and drought stress conditions. Therefore, our results demonstrated that UGT86A1 is a crucial responsive gene to salt and drought stresses in a land plant, thus promoting the understanding of the physiological significance of the UGT family in plant evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1