分子科学中大语言模型中知识学习偏好的定量分析

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2025-01-17 DOI:10.1038/s42256-024-00977-6
Pengfei Liu, Jun Tao, Zhixiang Ren
{"title":"分子科学中大语言模型中知识学习偏好的定量分析","authors":"Pengfei Liu, Jun Tao, Zhixiang Ren","doi":"10.1038/s42256-024-00977-6","DOIUrl":null,"url":null,"abstract":"Deep learning has significantly advanced molecular modelling and design, enabling an efficient understanding and discovery of novel molecules. In particular, large language models introduce a fresh research paradigm to tackle scientific problems from a natural language processing perspective. Large language models significantly enhance our understanding and generation of molecules, often surpassing existing methods with their capabilities to decode and synthesize complex molecular patterns. However, two key issues remain: how to quantify the match between model and data modalities and how to identify the knowledge-learning preferences of models. To address these challenges, we propose a multimodal benchmark, named ChEBI-20-MM, and perform 1,263 experiments to assess the model’s compatibility with data modalities and knowledge acquisition. Through the modal transition probability matrix, we provide insights into the most suitable modalities for tasks. Furthermore, we introduce a statistically interpretable approach to discover context-specific knowledge mapping by localized feature filtering. Our analysis offers an exploration of the learning mechanism and paves the way for advancing large language models in molecular science. Large language models promise substantial advances in molecular modelling and design. A multimodal benchmark is proposed to analyse performance, and 1,263 experiments are conducted to examine the compatibility of a large language model with data modalities and knowledge acquisition.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"7 2","pages":"315-327"},"PeriodicalIF":18.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative analysis of knowledge-learning preferences in large language models in molecular science\",\"authors\":\"Pengfei Liu, Jun Tao, Zhixiang Ren\",\"doi\":\"10.1038/s42256-024-00977-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has significantly advanced molecular modelling and design, enabling an efficient understanding and discovery of novel molecules. In particular, large language models introduce a fresh research paradigm to tackle scientific problems from a natural language processing perspective. Large language models significantly enhance our understanding and generation of molecules, often surpassing existing methods with their capabilities to decode and synthesize complex molecular patterns. However, two key issues remain: how to quantify the match between model and data modalities and how to identify the knowledge-learning preferences of models. To address these challenges, we propose a multimodal benchmark, named ChEBI-20-MM, and perform 1,263 experiments to assess the model’s compatibility with data modalities and knowledge acquisition. Through the modal transition probability matrix, we provide insights into the most suitable modalities for tasks. Furthermore, we introduce a statistically interpretable approach to discover context-specific knowledge mapping by localized feature filtering. Our analysis offers an exploration of the learning mechanism and paves the way for advancing large language models in molecular science. Large language models promise substantial advances in molecular modelling and design. A multimodal benchmark is proposed to analyse performance, and 1,263 experiments are conducted to examine the compatibility of a large language model with data modalities and knowledge acquisition.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"7 2\",\"pages\":\"315-327\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00977-6\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00977-6","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习具有显著的先进分子建模和设计,能够有效地理解和发现新分子。特别是,大型语言模型引入了一种新的研究范式,从自然语言处理的角度来解决科学问题。大型语言模型显著增强了我们对分子的理解和生成,通常超越现有的方法,具有解码和合成复杂分子模式的能力。然而,仍然存在两个关键问题:如何量化模型和数据模式之间的匹配以及如何识别模型的知识学习偏好。为了解决这些挑战,我们提出了一个名为ChEBI-20-MM的多模态基准,并进行了1,263个实验来评估模型与数据模态和知识获取的兼容性。通过模态转移概率矩阵,我们提供了最适合任务的模态的见解。此外,我们引入了一种统计可解释的方法,通过局部特征过滤来发现上下文特定的知识映射。我们的分析提供了对学习机制的探索,并为推进分子科学中的大型语言模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantitative analysis of knowledge-learning preferences in large language models in molecular science
Deep learning has significantly advanced molecular modelling and design, enabling an efficient understanding and discovery of novel molecules. In particular, large language models introduce a fresh research paradigm to tackle scientific problems from a natural language processing perspective. Large language models significantly enhance our understanding and generation of molecules, often surpassing existing methods with their capabilities to decode and synthesize complex molecular patterns. However, two key issues remain: how to quantify the match between model and data modalities and how to identify the knowledge-learning preferences of models. To address these challenges, we propose a multimodal benchmark, named ChEBI-20-MM, and perform 1,263 experiments to assess the model’s compatibility with data modalities and knowledge acquisition. Through the modal transition probability matrix, we provide insights into the most suitable modalities for tasks. Furthermore, we introduce a statistically interpretable approach to discover context-specific knowledge mapping by localized feature filtering. Our analysis offers an exploration of the learning mechanism and paves the way for advancing large language models in molecular science. Large language models promise substantial advances in molecular modelling and design. A multimodal benchmark is proposed to analyse performance, and 1,263 experiments are conducted to examine the compatibility of a large language model with data modalities and knowledge acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Data-driven federated learning in drug discovery with knowledge distillation Bridging the gap between machine confidence and human perceptions A unified deep framework for peptide–major histocompatibility complex–T cell receptor binding prediction Teaching robots to build simulations of themselves Large language models for scientific discovery in molecular property prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1