基于时空深度学习的挖掘风险多属性预测

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-17 DOI:10.1016/j.autcon.2025.105964
Yue Pan, Wen He, Jin-Jian Chen
{"title":"基于时空深度学习的挖掘风险多属性预测","authors":"Yue Pan, Wen He, Jin-Jian Chen","doi":"10.1016/j.autcon.2025.105964","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid deep learning model named the Online Learning-based Multi-Attribute Spatial-Temporal Transformer Network (OMSTTN) to predict excavation-induced risks during foundation pit excavation. OMSTTN integrates a hybrid Transformer offline model with a parallel embedding layer to process diverse monitoring attributes and employs a Spatial-Temporal Transformer block to capture complex spatiotemporal correlations. An online learning mechanism enables dynamic adaptation to evolving conditions, enhancing prediction accuracy. Validated on a real-world XuZhou Rail Transit project, OMSTTN achieves strong prediction performance (MAE: 0.0461, RMSE: 0.0699, R<ce:sup loc=\"post\">2</ce:sup>: 0.9441). Comparative experiments demonstrate its effectiveness in handling multi-attribute data, dynamic changes, and spatiotemporal patterns. In short, OMSTTN narrows the research gap by providing a spatiotemporal framework for accurate risk prediction, offering significant potential for early risk detection and proactive management in excavation engineering.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"55 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal deep learning for multi-attribute prediction of excavation-induced risk\",\"authors\":\"Yue Pan, Wen He, Jin-Jian Chen\",\"doi\":\"10.1016/j.autcon.2025.105964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid deep learning model named the Online Learning-based Multi-Attribute Spatial-Temporal Transformer Network (OMSTTN) to predict excavation-induced risks during foundation pit excavation. OMSTTN integrates a hybrid Transformer offline model with a parallel embedding layer to process diverse monitoring attributes and employs a Spatial-Temporal Transformer block to capture complex spatiotemporal correlations. An online learning mechanism enables dynamic adaptation to evolving conditions, enhancing prediction accuracy. Validated on a real-world XuZhou Rail Transit project, OMSTTN achieves strong prediction performance (MAE: 0.0461, RMSE: 0.0699, R<ce:sup loc=\\\"post\\\">2</ce:sup>: 0.9441). Comparative experiments demonstrate its effectiveness in handling multi-attribute data, dynamic changes, and spatiotemporal patterns. In short, OMSTTN narrows the research gap by providing a spatiotemporal framework for accurate risk prediction, offering significant potential for early risk detection and proactive management in excavation engineering.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2025.105964\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105964","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于在线学习的多属性时空变压器网络(OMSTTN)混合深度学习模型,用于预测基坑开挖过程中的开挖风险。OMSTTN将混合Transformer离线模型与并行嵌入层集成在一起,以处理各种监测属性,并采用时空Transformer块来捕获复杂的时空相关性。在线学习机制能够动态适应不断变化的条件,提高预测精度。在徐州轨道交通实际项目上验证,OMSTTN具有较强的预测性能(MAE: 0.0461, RMSE: 0.0699, R2: 0.9441)。对比实验证明了该方法在处理多属性数据、动态变化和时空格局等方面的有效性。总之,OMSTTN通过提供准确风险预测的时空框架,缩小了研究空白,为挖掘工程早期风险发现和主动管理提供了重要潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal deep learning for multi-attribute prediction of excavation-induced risk
This paper presents a hybrid deep learning model named the Online Learning-based Multi-Attribute Spatial-Temporal Transformer Network (OMSTTN) to predict excavation-induced risks during foundation pit excavation. OMSTTN integrates a hybrid Transformer offline model with a parallel embedding layer to process diverse monitoring attributes and employs a Spatial-Temporal Transformer block to capture complex spatiotemporal correlations. An online learning mechanism enables dynamic adaptation to evolving conditions, enhancing prediction accuracy. Validated on a real-world XuZhou Rail Transit project, OMSTTN achieves strong prediction performance (MAE: 0.0461, RMSE: 0.0699, R2: 0.9441). Comparative experiments demonstrate its effectiveness in handling multi-attribute data, dynamic changes, and spatiotemporal patterns. In short, OMSTTN narrows the research gap by providing a spatiotemporal framework for accurate risk prediction, offering significant potential for early risk detection and proactive management in excavation engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1