自适应软粘附仿生攀爬机器人结构设计与优化

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-16 DOI:10.1016/j.autcon.2025.105975
Huaixin Chen, Quansheng Jiang, Zihan Zhang, Shilei Wu, Yehu Shen, Fengyu Xu
{"title":"自适应软粘附仿生攀爬机器人结构设计与优化","authors":"Huaixin Chen, Quansheng Jiang, Zihan Zhang, Shilei Wu, Yehu Shen, Fengyu Xu","doi":"10.1016/j.autcon.2025.105975","DOIUrl":null,"url":null,"abstract":"Soft-body climbing robots can automatically adapt to the external shape of the climbing surface, but their load-carrying capacity and output torque are insufficient. To address this problem, a bionic climbing robot that can adapt to different complex climbing surfaces as well as a high load-bearing capacity is designed. The proposed robot consists of three bionic crab-pincer gripping structures and two retractable torsos, and its gripping action is achieved by cable-driven. The mechanical models of the cable-driven and rotatable joints were established, and the relationship between motor input torque and end force was determined. The experimental results show that the climbing robot designed in this paper exhibits strong adaptivity on a variety of different materials and different shapes of climbing surfaces, and has strong climbing stability. Its maximum pipe climbing diameter is 290 mm, and the maximum load capacity is 10.5 kg.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"6 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural design and optimization of adaptive soft adhesion bionic climbing robot\",\"authors\":\"Huaixin Chen, Quansheng Jiang, Zihan Zhang, Shilei Wu, Yehu Shen, Fengyu Xu\",\"doi\":\"10.1016/j.autcon.2025.105975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft-body climbing robots can automatically adapt to the external shape of the climbing surface, but their load-carrying capacity and output torque are insufficient. To address this problem, a bionic climbing robot that can adapt to different complex climbing surfaces as well as a high load-bearing capacity is designed. The proposed robot consists of three bionic crab-pincer gripping structures and two retractable torsos, and its gripping action is achieved by cable-driven. The mechanical models of the cable-driven and rotatable joints were established, and the relationship between motor input torque and end force was determined. The experimental results show that the climbing robot designed in this paper exhibits strong adaptivity on a variety of different materials and different shapes of climbing surfaces, and has strong climbing stability. Its maximum pipe climbing diameter is 290 mm, and the maximum load capacity is 10.5 kg.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2025.105975\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105975","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

软体攀爬机器人能够自动适应攀爬表面的外部形状,但其承载能力和输出扭矩不足。为了解决这一问题,设计了一种能够适应不同复杂爬面并具有高承载能力的仿生攀爬机器人。该机器人由三个仿生蟹钳夹持结构和两个可伸缩躯干组成,其夹持动作由缆索驱动实现。建立了缆索驱动和可旋转关节的力学模型,确定了电机输入转矩与端力的关系。实验结果表明,本文设计的攀爬机器人对多种不同材料和不同形状的攀爬表面具有较强的适应性,具有较强的攀爬稳定性。其最大攀爬管径290毫米,最大承载能力10.5公斤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural design and optimization of adaptive soft adhesion bionic climbing robot
Soft-body climbing robots can automatically adapt to the external shape of the climbing surface, but their load-carrying capacity and output torque are insufficient. To address this problem, a bionic climbing robot that can adapt to different complex climbing surfaces as well as a high load-bearing capacity is designed. The proposed robot consists of three bionic crab-pincer gripping structures and two retractable torsos, and its gripping action is achieved by cable-driven. The mechanical models of the cable-driven and rotatable joints were established, and the relationship between motor input torque and end force was determined. The experimental results show that the climbing robot designed in this paper exhibits strong adaptivity on a variety of different materials and different shapes of climbing surfaces, and has strong climbing stability. Its maximum pipe climbing diameter is 290 mm, and the maximum load capacity is 10.5 kg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Towards worker-centric construction scene understanding: Status quo and future directions Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates Image inpainting using diffusion models to restore eaves tile patterns in Chinese heritage buildings Detection of helmet use among construction workers via helmet-head region matching and state tracking Automated point positioning for robotic spot welding using integrated 2D drawings and structured light cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1