可编程模拟分子和材料与可重构量子处理器

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-01-22 DOI:10.1038/s41567-024-02738-z
Nishad Maskara, Stefan Ostermann, James Shee, Marcin Kalinowski, Abigail McClain Gomez, Rodrigo Araiza Bravo, Derek S. Wang, Anna I. Krylov, Norman Y. Yao, Martin Head-Gordon, Mikhail D. Lukin, Susanne F. Yelin
{"title":"可编程模拟分子和材料与可重构量子处理器","authors":"Nishad Maskara, Stefan Ostermann, James Shee, Marcin Kalinowski, Abigail McClain Gomez, Rodrigo Araiza Bravo, Derek S. Wang, Anna I. Krylov, Norman Y. Yao, Martin Head-Gordon, Mikhail D. Lukin, Susanne F. Yelin","doi":"10.1038/s41567-024-02738-z","DOIUrl":null,"url":null,"abstract":"Simulations of quantum chemistry and quantum materials are believed to be among the most important applications of quantum information processors. However, realizing practical quantum advantage for such problems is challenging because of the prohibitive computational cost of programming typical problems into quantum hardware. Here we introduce a simulation framework for strongly correlated quantum systems represented by model spin Hamiltonians that uses reconfigurable qubit architectures to simulate real-time dynamics in a programmable way. Our approach also introduces an algorithm for extracting chemically relevant spectral properties via classical co-processing of quantum measurement results. We develop a digital–analogue simulation toolbox for efficient Hamiltonian time evolution using digital Floquet engineering and hardware-optimized multi-qubit operations to accurately realize complex spin–spin interactions. As an example, we propose an implementation based on Rydberg atom arrays. In addition, we show how detailed spectral information can be extracted from the dynamics through snapshot measurements and single-ancilla control, enabling the evaluation of excitation energies and finite-temperature susceptibilities from a single dataset. To illustrate the approach, we show how to use the method to compute key properties of a polynuclear transition-metal catalyst and two-dimensional magnetic materials. Quantum simulations of chemistry and materials are challenging due to the complexity of correlated systems. A framework based on reconfigurable qubit architectures and digital–analogue simulations provides a hardware-efficient path forwards.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 2","pages":"289-297"},"PeriodicalIF":17.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02738-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Programmable simulations of molecules and materials with reconfigurable quantum processors\",\"authors\":\"Nishad Maskara, Stefan Ostermann, James Shee, Marcin Kalinowski, Abigail McClain Gomez, Rodrigo Araiza Bravo, Derek S. Wang, Anna I. Krylov, Norman Y. Yao, Martin Head-Gordon, Mikhail D. Lukin, Susanne F. Yelin\",\"doi\":\"10.1038/s41567-024-02738-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations of quantum chemistry and quantum materials are believed to be among the most important applications of quantum information processors. However, realizing practical quantum advantage for such problems is challenging because of the prohibitive computational cost of programming typical problems into quantum hardware. Here we introduce a simulation framework for strongly correlated quantum systems represented by model spin Hamiltonians that uses reconfigurable qubit architectures to simulate real-time dynamics in a programmable way. Our approach also introduces an algorithm for extracting chemically relevant spectral properties via classical co-processing of quantum measurement results. We develop a digital–analogue simulation toolbox for efficient Hamiltonian time evolution using digital Floquet engineering and hardware-optimized multi-qubit operations to accurately realize complex spin–spin interactions. As an example, we propose an implementation based on Rydberg atom arrays. In addition, we show how detailed spectral information can be extracted from the dynamics through snapshot measurements and single-ancilla control, enabling the evaluation of excitation energies and finite-temperature susceptibilities from a single dataset. To illustrate the approach, we show how to use the method to compute key properties of a polynuclear transition-metal catalyst and two-dimensional magnetic materials. Quantum simulations of chemistry and materials are challenging due to the complexity of correlated systems. A framework based on reconfigurable qubit architectures and digital–analogue simulations provides a hardware-efficient path forwards.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"21 2\",\"pages\":\"289-297\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-024-02738-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02738-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02738-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子化学和量子材料的模拟被认为是量子信息处理器最重要的应用之一。然而,实现此类问题的实际量子优势是具有挑战性的,因为将典型问题编程到量子硬件中的计算成本令人望而却步。在这里,我们引入了一个由模型自旋哈密顿子表示的强相关量子系统的仿真框架,该框架使用可重构量子比特架构以可编程的方式模拟实时动力学。我们的方法还介绍了一种通过量子测量结果的经典协同处理提取化学相关光谱特性的算法。我们开发了一个数字模拟仿真工具箱,利用数字Floquet工程和硬件优化的多量子位运算来实现高效的哈密顿时间演化,以精确实现复杂的自旋-自旋相互作用。作为一个例子,我们提出了一个基于里德伯原子阵列的实现。此外,我们展示了如何通过快照测量和单辅助控制从动力学中提取详细的光谱信息,从而能够从单个数据集中评估激发能和有限温度敏感性。为了说明这种方法,我们展示了如何使用该方法来计算多核过渡金属催化剂和二维磁性材料的关键性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Programmable simulations of molecules and materials with reconfigurable quantum processors
Simulations of quantum chemistry and quantum materials are believed to be among the most important applications of quantum information processors. However, realizing practical quantum advantage for such problems is challenging because of the prohibitive computational cost of programming typical problems into quantum hardware. Here we introduce a simulation framework for strongly correlated quantum systems represented by model spin Hamiltonians that uses reconfigurable qubit architectures to simulate real-time dynamics in a programmable way. Our approach also introduces an algorithm for extracting chemically relevant spectral properties via classical co-processing of quantum measurement results. We develop a digital–analogue simulation toolbox for efficient Hamiltonian time evolution using digital Floquet engineering and hardware-optimized multi-qubit operations to accurately realize complex spin–spin interactions. As an example, we propose an implementation based on Rydberg atom arrays. In addition, we show how detailed spectral information can be extracted from the dynamics through snapshot measurements and single-ancilla control, enabling the evaluation of excitation energies and finite-temperature susceptibilities from a single dataset. To illustrate the approach, we show how to use the method to compute key properties of a polynuclear transition-metal catalyst and two-dimensional magnetic materials. Quantum simulations of chemistry and materials are challenging due to the complexity of correlated systems. A framework based on reconfigurable qubit architectures and digital–analogue simulations provides a hardware-efficient path forwards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Diffraction minima resolve point scatterers at few hundredths of the wavelength Cyclic jetting enables microbubble-mediated drug delivery Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1