{"title":"基于潜在一致性挖掘和增强的三维形状分割","authors":"Zhenyu Shu;Shiyang Li;Shiqing Xin;Ligang Liu","doi":"10.1109/TMM.2024.3521674","DOIUrl":null,"url":null,"abstract":"3D shape segmentation is a crucial task in the field of multimedia analysis and processing, and recent years have seen a surge in research on this topic. However, many existing methods only consider geometric features of 3D shapes and fail to explore the potential connections between faces, limiting their segmentation performance. In this paper, we propose a novel segmentation approach that mines and enhances the potential consistency of 3D shapes to overcome this limitation. The key idea is to mine the consistency between different partitions of 3D shapes and to use the unique consistency enhancement strategy to continuously optimize the consistency features for the network. Our method also includes a comprehensive set of network structures to mine and enhance consistent features, enabling more effective feature extraction and better utilization of contextual information around each face when processing complex shapes. We evaluate our approach on public benchmarks through extensive experiments and demonstrate its effectiveness in achieving higher accuracy than existing methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"133-144"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Shape Segmentation With Potential Consistency Mining and Enhancement\",\"authors\":\"Zhenyu Shu;Shiyang Li;Shiqing Xin;Ligang Liu\",\"doi\":\"10.1109/TMM.2024.3521674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D shape segmentation is a crucial task in the field of multimedia analysis and processing, and recent years have seen a surge in research on this topic. However, many existing methods only consider geometric features of 3D shapes and fail to explore the potential connections between faces, limiting their segmentation performance. In this paper, we propose a novel segmentation approach that mines and enhances the potential consistency of 3D shapes to overcome this limitation. The key idea is to mine the consistency between different partitions of 3D shapes and to use the unique consistency enhancement strategy to continuously optimize the consistency features for the network. Our method also includes a comprehensive set of network structures to mine and enhance consistent features, enabling more effective feature extraction and better utilization of contextual information around each face when processing complex shapes. We evaluate our approach on public benchmarks through extensive experiments and demonstrate its effectiveness in achieving higher accuracy than existing methods.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"133-144\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814983/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814983/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
3D Shape Segmentation With Potential Consistency Mining and Enhancement
3D shape segmentation is a crucial task in the field of multimedia analysis and processing, and recent years have seen a surge in research on this topic. However, many existing methods only consider geometric features of 3D shapes and fail to explore the potential connections between faces, limiting their segmentation performance. In this paper, we propose a novel segmentation approach that mines and enhances the potential consistency of 3D shapes to overcome this limitation. The key idea is to mine the consistency between different partitions of 3D shapes and to use the unique consistency enhancement strategy to continuously optimize the consistency features for the network. Our method also includes a comprehensive set of network structures to mine and enhance consistent features, enabling more effective feature extraction and better utilization of contextual information around each face when processing complex shapes. We evaluate our approach on public benchmarks through extensive experiments and demonstrate its effectiveness in achieving higher accuracy than existing methods.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.