利用神经网络模型的泛化对催化过程中覆盖效应进行综合采样

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-12-09 DOI:10.1039/D4DD00328D
Daniel Schwalbe-Koda, Nitish Govindarajan and Joel B. Varley
{"title":"利用神经网络模型的泛化对催化过程中覆盖效应进行综合采样","authors":"Daniel Schwalbe-Koda, Nitish Govindarajan and Joel B. Varley","doi":"10.1039/D4DD00328D","DOIUrl":null,"url":null,"abstract":"<p >Sampling high-coverage configurations and predicting adsorbate–adsorbate interactions on surfaces are highly relevant to understand realistic interfaces in heterogeneous catalysis. However, the combinatorial explosion in the number of adsorbate configurations among diverse site environments presents a considerable challenge in accurately estimating these interactions. Here, we propose a strategy combining high-throughput simulation pipelines and a neural network-based model with the MACE architecture to increase sampling efficiency and speed. By training the models on unrelaxed structures and energies, which can be quickly obtained from single-point DFT calculations, we achieve excellent performance for both in-domain and out-of-domain predictions, including generalization to different facets, coverage regimes and low-energy configurations. From this systematic understanding of model robustness, we exhaustively sample the configuration phase space of catalytic systems without active learning. In particular, by predicting binding energies for over 14 million structures within the neural network model and the simulated annealing method, we predict coverage-dependent adsorption energies for CO adsorption on six Cu facets (111, 100, 211, 331, 410 and 711) and the co-adsorption of CO and CHOH on Rh(111). When validated by targeted post-sampling relaxations, our results for CO on Cu correctly reproduce experimental interaction energies reported in the literature, and provide atomistic insights on the site occupancy of steps and terraces for the six facets at all coverage regimes. Additionally, the arrangement of CO on the Rh(111) surface is demonstrated to substantially impact the activation barriers for the CHOH bond scission, illustrating the importance of comprehensive sampling on reaction kinetics. Our findings demonstrate that simplified data generation routines and evaluating generalization of neural networks can be deployed at scale to understand lateral interactions on surfaces, paving the way towards realistic modeling of heterogeneous catalytic processes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 234-251"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00328d?page=search","citationCount":"0","resultStr":"{\"title\":\"Comprehensive sampling of coverage effects in catalysis by leveraging generalization in neural network models†\",\"authors\":\"Daniel Schwalbe-Koda, Nitish Govindarajan and Joel B. Varley\",\"doi\":\"10.1039/D4DD00328D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sampling high-coverage configurations and predicting adsorbate–adsorbate interactions on surfaces are highly relevant to understand realistic interfaces in heterogeneous catalysis. However, the combinatorial explosion in the number of adsorbate configurations among diverse site environments presents a considerable challenge in accurately estimating these interactions. Here, we propose a strategy combining high-throughput simulation pipelines and a neural network-based model with the MACE architecture to increase sampling efficiency and speed. By training the models on unrelaxed structures and energies, which can be quickly obtained from single-point DFT calculations, we achieve excellent performance for both in-domain and out-of-domain predictions, including generalization to different facets, coverage regimes and low-energy configurations. From this systematic understanding of model robustness, we exhaustively sample the configuration phase space of catalytic systems without active learning. In particular, by predicting binding energies for over 14 million structures within the neural network model and the simulated annealing method, we predict coverage-dependent adsorption energies for CO adsorption on six Cu facets (111, 100, 211, 331, 410 and 711) and the co-adsorption of CO and CHOH on Rh(111). When validated by targeted post-sampling relaxations, our results for CO on Cu correctly reproduce experimental interaction energies reported in the literature, and provide atomistic insights on the site occupancy of steps and terraces for the six facets at all coverage regimes. Additionally, the arrangement of CO on the Rh(111) surface is demonstrated to substantially impact the activation barriers for the CHOH bond scission, illustrating the importance of comprehensive sampling on reaction kinetics. Our findings demonstrate that simplified data generation routines and evaluating generalization of neural networks can be deployed at scale to understand lateral interactions on surfaces, paving the way towards realistic modeling of heterogeneous catalytic processes.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 1\",\"pages\":\" 234-251\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00328d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00328d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00328d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采样高覆盖结构和预测表面上吸附物-吸附物的相互作用对于理解多相催化中的实际界面非常重要。然而,不同场所环境中吸附质构型数量的组合爆炸对准确估计这些相互作用提出了相当大的挑战。在此,我们提出了一种将高通量仿真管道和基于神经网络的模型与MACE架构相结合的策略,以提高采样效率和速度。通过在非松弛结构和能量上训练模型,可以从单点DFT计算中快速获得,我们在域内和域外预测方面都取得了出色的性能,包括对不同方面,覆盖范围和低能量配置的推广。从对模型鲁棒性的系统理解中,我们在没有主动学习的情况下对催化系统的组态相空间进行了详尽的采样。特别是,通过在神经网络模型和模拟退火方法中预测超过1400万个结构的结合能,我们预测了CO在6个Cu面(111、100、211、3331、410和711)上的吸附能,以及CO和CHOH在Rh上的共吸附能(111)。当经过有针对性的采样后松弛验证时,我们的结果正确地再现了文献中报道的CO对Cu的实验相互作用能,并提供了在所有覆盖制度下六个方面的台阶和梯田的位置占用的原子见解。此外,CO在Rh(111)表面的排列被证明对CHOH键断裂的激活屏障有很大的影响,说明了综合采样对反应动力学的重要性。我们的研究结果表明,简化的数据生成程序和评估神经网络的泛化可以大规模部署,以了解表面上的横向相互作用,为多相催化过程的现实建模铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive sampling of coverage effects in catalysis by leveraging generalization in neural network models†

Sampling high-coverage configurations and predicting adsorbate–adsorbate interactions on surfaces are highly relevant to understand realistic interfaces in heterogeneous catalysis. However, the combinatorial explosion in the number of adsorbate configurations among diverse site environments presents a considerable challenge in accurately estimating these interactions. Here, we propose a strategy combining high-throughput simulation pipelines and a neural network-based model with the MACE architecture to increase sampling efficiency and speed. By training the models on unrelaxed structures and energies, which can be quickly obtained from single-point DFT calculations, we achieve excellent performance for both in-domain and out-of-domain predictions, including generalization to different facets, coverage regimes and low-energy configurations. From this systematic understanding of model robustness, we exhaustively sample the configuration phase space of catalytic systems without active learning. In particular, by predicting binding energies for over 14 million structures within the neural network model and the simulated annealing method, we predict coverage-dependent adsorption energies for CO adsorption on six Cu facets (111, 100, 211, 331, 410 and 711) and the co-adsorption of CO and CHOH on Rh(111). When validated by targeted post-sampling relaxations, our results for CO on Cu correctly reproduce experimental interaction energies reported in the literature, and provide atomistic insights on the site occupancy of steps and terraces for the six facets at all coverage regimes. Additionally, the arrangement of CO on the Rh(111) surface is demonstrated to substantially impact the activation barriers for the CHOH bond scission, illustrating the importance of comprehensive sampling on reaction kinetics. Our findings demonstrate that simplified data generation routines and evaluating generalization of neural networks can be deployed at scale to understand lateral interactions on surfaces, paving the way towards realistic modeling of heterogeneous catalytic processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1