{"title":"基于mil的给药系统在癌症治疗中的最新应用趋势分析综述","authors":"Mohammad Beiranvand, Gholamreza Dehghan","doi":"10.1007/s00604-024-06944-7","DOIUrl":null,"url":null,"abstract":"<div><p>MILs (Materials Institute Lavoisier), as nanocarriers based on metal–organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier. MIL nanocarriers have been synthesized mainly by thermal and hydrothermal methods due to their single-step nature and the ability to produce individual crystals with tunable sizes. According to the data available in the literature, MIL-53 and MIL-101 are the best MILs for drug delivery. These MILs have a high ability to release drugs under acidic conditions, indicating their high efficiency compared to other MILs. In addition to drugs, these nanocarriers can also carry fluorescent, photothermal, and photodynamic agents. These agents allow the MIL nanocarriers to benefit from the therapeutic potential of photothermal and photodynamic agents in addition to the therapeutic capacity of the drug. Furthermore, the fluorescent active ingredient gives these nanocarriers a further tracking capability in addition to the inherent tracking capability of MRI. Therefore, MIL nanocarriers as theranostic carriers have the potential to revolutionize both drug delivery and imaging.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical review of the therapeutic application of recent trends in MIL-based delivery systems in cancer therapy\",\"authors\":\"Mohammad Beiranvand, Gholamreza Dehghan\",\"doi\":\"10.1007/s00604-024-06944-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MILs (Materials Institute Lavoisier), as nanocarriers based on metal–organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier. MIL nanocarriers have been synthesized mainly by thermal and hydrothermal methods due to their single-step nature and the ability to produce individual crystals with tunable sizes. According to the data available in the literature, MIL-53 and MIL-101 are the best MILs for drug delivery. These MILs have a high ability to release drugs under acidic conditions, indicating their high efficiency compared to other MILs. In addition to drugs, these nanocarriers can also carry fluorescent, photothermal, and photodynamic agents. These agents allow the MIL nanocarriers to benefit from the therapeutic potential of photothermal and photodynamic agents in addition to the therapeutic capacity of the drug. Furthermore, the fluorescent active ingredient gives these nanocarriers a further tracking capability in addition to the inherent tracking capability of MRI. Therefore, MIL nanocarriers as theranostic carriers have the potential to revolutionize both drug delivery and imaging.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 2\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06944-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06944-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An analytical review of the therapeutic application of recent trends in MIL-based delivery systems in cancer therapy
MILs (Materials Institute Lavoisier), as nanocarriers based on metal–organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier. MIL nanocarriers have been synthesized mainly by thermal and hydrothermal methods due to their single-step nature and the ability to produce individual crystals with tunable sizes. According to the data available in the literature, MIL-53 and MIL-101 are the best MILs for drug delivery. These MILs have a high ability to release drugs under acidic conditions, indicating their high efficiency compared to other MILs. In addition to drugs, these nanocarriers can also carry fluorescent, photothermal, and photodynamic agents. These agents allow the MIL nanocarriers to benefit from the therapeutic potential of photothermal and photodynamic agents in addition to the therapeutic capacity of the drug. Furthermore, the fluorescent active ingredient gives these nanocarriers a further tracking capability in addition to the inherent tracking capability of MRI. Therefore, MIL nanocarriers as theranostic carriers have the potential to revolutionize both drug delivery and imaging.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.