{"title":"疏水颗粒层中水蒸汽在水平圆管内冷凝过程中的传热","authors":"M. I. Shilyaev, E. M. Khromova, A. R. Bogomolov","doi":"10.1134/S1810232824040143","DOIUrl":null,"url":null,"abstract":"<p>Analytical modeling of heat transfer during condensation onto a horizontal round tube placed in a hydrophobic granular layer has been performed. According to generalized experimental results of the authors, the area under study was divided into three regimes of the condensate film flow: Re <span>\\(< 5\\)</span>, <span>\\(5 < {\\rm Re} < 10\\)</span>, and Re <span>\\(> 10\\)</span>. For the first two regimes, in the absence of effect of capillary forces, theoretical solutions were found based on the representation of a near-wall pore channel in the form of a flat annular slot with hydrophobic side surfaces; the solutions are in good agreement with the experimental data. At Re <span>\\(> 10\\)</span>, a self-similar regime of the hydrodynamics of the condensate film settles, independent of the Re number, with a constant mean film thickness over the tube perimeter and the condensate part not involved in the heat transfer in the tube draining into the pore space of the layer. In all analyzed cases, there is heat transfer deterioration by two to three times on a horizontal tube in a hydrophobic layer in comparison with a smooth hydrophilic tube, because of the peculiarities of the hydrodynamics of the condensate flow in the wall pore channels. For all modes, formulas were obtained for calculation of the Nusselt numbers of heat transfer in dependence on the Re number.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"840 - 851"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer during Condensation of Liquid Vapor on Horizontal Circular Tube in Hydrophobic Granular Layer\",\"authors\":\"M. I. Shilyaev, E. M. Khromova, A. R. Bogomolov\",\"doi\":\"10.1134/S1810232824040143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analytical modeling of heat transfer during condensation onto a horizontal round tube placed in a hydrophobic granular layer has been performed. According to generalized experimental results of the authors, the area under study was divided into three regimes of the condensate film flow: Re <span>\\\\(< 5\\\\)</span>, <span>\\\\(5 < {\\\\rm Re} < 10\\\\)</span>, and Re <span>\\\\(> 10\\\\)</span>. For the first two regimes, in the absence of effect of capillary forces, theoretical solutions were found based on the representation of a near-wall pore channel in the form of a flat annular slot with hydrophobic side surfaces; the solutions are in good agreement with the experimental data. At Re <span>\\\\(> 10\\\\)</span>, a self-similar regime of the hydrodynamics of the condensate film settles, independent of the Re number, with a constant mean film thickness over the tube perimeter and the condensate part not involved in the heat transfer in the tube draining into the pore space of the layer. In all analyzed cases, there is heat transfer deterioration by two to three times on a horizontal tube in a hydrophobic layer in comparison with a smooth hydrophilic tube, because of the peculiarities of the hydrodynamics of the condensate flow in the wall pore channels. For all modes, formulas were obtained for calculation of the Nusselt numbers of heat transfer in dependence on the Re number.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 4\",\"pages\":\"840 - 851\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824040143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Heat Transfer during Condensation of Liquid Vapor on Horizontal Circular Tube in Hydrophobic Granular Layer
Analytical modeling of heat transfer during condensation onto a horizontal round tube placed in a hydrophobic granular layer has been performed. According to generalized experimental results of the authors, the area under study was divided into three regimes of the condensate film flow: Re \(< 5\), \(5 < {\rm Re} < 10\), and Re \(> 10\). For the first two regimes, in the absence of effect of capillary forces, theoretical solutions were found based on the representation of a near-wall pore channel in the form of a flat annular slot with hydrophobic side surfaces; the solutions are in good agreement with the experimental data. At Re \(> 10\), a self-similar regime of the hydrodynamics of the condensate film settles, independent of the Re number, with a constant mean film thickness over the tube perimeter and the condensate part not involved in the heat transfer in the tube draining into the pore space of the layer. In all analyzed cases, there is heat transfer deterioration by two to three times on a horizontal tube in a hydrophobic layer in comparison with a smooth hydrophilic tube, because of the peculiarities of the hydrodynamics of the condensate flow in the wall pore channels. For all modes, formulas were obtained for calculation of the Nusselt numbers of heat transfer in dependence on the Re number.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.