Narueporn Payungwong, Han Cheng, Ken Nakajima, Chee-Cheong Ho, Jitladda Sakdapipanich
{"title":"优化硫硫化以提高胶乳浸渍膜的机械性能:来自AFM峰值力定量纳米力学制图的见解","authors":"Narueporn Payungwong, Han Cheng, Ken Nakajima, Chee-Cheong Ho, Jitladda Sakdapipanich","doi":"10.1007/s10118-024-3228-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber (NR) latex-dipped products. Utilizing sulfur vulcanization, known for its operational simplicity and cost-effectiveness, we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-, di-, and polysulfidic bonds. Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films, employing three types of NR latex, namely concentrated NR (CNR), deproteinized NR (DPNR), and small rubber particle NR (SRP), each representing distinct non-rubber components (NRCs). The study utilized advanced atomic force microscopy (AFM) equipped with PeakForce Quantitative Nanomechanical Mapping (QNM) to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex. Our findings reveal that films by CNR processed using the conventional vulcanization (CV) system exhibited enhanced tensile strength and elongation at break. It even showed a lower crosslink density than those processed using the efficient vulcanization (EV) system. Interestingly, DPNR films showed a more uniform distribution of Young’s modulus, correlating well with their superior mechanical strength. In contrast, SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates, hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid. The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed. This research reveals further the very intricate relationship between the vulcanization methods, sulfur content, and latex type in optimizing the mechanical performance of NR latex products. It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 1","pages":"70 - 82"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Sulfur Vulcanization for Enhanced Mechanical Performance of Hevea Latex-Dipped Film: Insights from AFM PeakForce Quantitative Nanomechanical Mapping\",\"authors\":\"Narueporn Payungwong, Han Cheng, Ken Nakajima, Chee-Cheong Ho, Jitladda Sakdapipanich\",\"doi\":\"10.1007/s10118-024-3228-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber (NR) latex-dipped products. Utilizing sulfur vulcanization, known for its operational simplicity and cost-effectiveness, we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-, di-, and polysulfidic bonds. Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films, employing three types of NR latex, namely concentrated NR (CNR), deproteinized NR (DPNR), and small rubber particle NR (SRP), each representing distinct non-rubber components (NRCs). The study utilized advanced atomic force microscopy (AFM) equipped with PeakForce Quantitative Nanomechanical Mapping (QNM) to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex. Our findings reveal that films by CNR processed using the conventional vulcanization (CV) system exhibited enhanced tensile strength and elongation at break. It even showed a lower crosslink density than those processed using the efficient vulcanization (EV) system. Interestingly, DPNR films showed a more uniform distribution of Young’s modulus, correlating well with their superior mechanical strength. In contrast, SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates, hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid. The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed. This research reveals further the very intricate relationship between the vulcanization methods, sulfur content, and latex type in optimizing the mechanical performance of NR latex products. It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 1\",\"pages\":\"70 - 82\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3228-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3228-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Optimizing Sulfur Vulcanization for Enhanced Mechanical Performance of Hevea Latex-Dipped Film: Insights from AFM PeakForce Quantitative Nanomechanical Mapping
This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber (NR) latex-dipped products. Utilizing sulfur vulcanization, known for its operational simplicity and cost-effectiveness, we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-, di-, and polysulfidic bonds. Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films, employing three types of NR latex, namely concentrated NR (CNR), deproteinized NR (DPNR), and small rubber particle NR (SRP), each representing distinct non-rubber components (NRCs). The study utilized advanced atomic force microscopy (AFM) equipped with PeakForce Quantitative Nanomechanical Mapping (QNM) to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex. Our findings reveal that films by CNR processed using the conventional vulcanization (CV) system exhibited enhanced tensile strength and elongation at break. It even showed a lower crosslink density than those processed using the efficient vulcanization (EV) system. Interestingly, DPNR films showed a more uniform distribution of Young’s modulus, correlating well with their superior mechanical strength. In contrast, SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates, hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid. The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed. This research reveals further the very intricate relationship between the vulcanization methods, sulfur content, and latex type in optimizing the mechanical performance of NR latex products. It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.