超临界流体挤压豌豆粉和豌豆蛋白浓缩物:去除异味和改善感官的效果。

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of Food Science Pub Date : 2025-01-20 DOI:10.1111/1750-3841.70004
Aamir Iqbal, Abdul Fateh Hosseini, Syed S. H. Rizvi
{"title":"超临界流体挤压豌豆粉和豌豆蛋白浓缩物:去除异味和改善感官的效果。","authors":"Aamir Iqbal,&nbsp;Abdul Fateh Hosseini,&nbsp;Syed S. H. Rizvi","doi":"10.1111/1750-3841.70004","DOIUrl":null,"url":null,"abstract":"<p>This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products. Supercritical carbon dioxide (SC-CO<sub>2</sub>), a well-known green solvent, was employed in combination with an extrusion system to achieve off-flavor reduction at larger scale. Using various methods such as headspace solid-phase microextraction-gas chromatography mass-spectroscopy (HS-SPME-GC-MS) and sensory evaluation, this study demonstrated that SCFX significantly reduced the off-flavor in pea flour (PF) and pea protein concentrate (PPC). HS-SPME-GC-MS analyses identified major off-flavor compounds in unextruded PF and PPC, including 1-hexanol, 1-octanol, 1-nonanol, nonanal, and 2-alkyl methoxypyrazines. Following SCFX treatment, all these compounds except nonanal were removed. Total off-flavor compound concentration dropped from 923 to 126.5 ng/g in PF, and from 571.7 to 65.9 ng/g in pea protein concentrate PPC after SCFX treatment. Sensory evaluation corroborated these HS-SPME-GC-MS findings, showing that over 80% of the participants could accurately distinguish the extruded samples from the unextruded ones, perceiving the treated samples as having the least beany flavor. These findings highlight the efficacy of SCFX processing in enhancing the sensory profile of pulse-based products by removing off-flavor compounds.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical fluid extrusion of pea flour and pea protein concentrate: Effects on off-flavor removal and sensory improvement\",\"authors\":\"Aamir Iqbal,&nbsp;Abdul Fateh Hosseini,&nbsp;Syed S. H. Rizvi\",\"doi\":\"10.1111/1750-3841.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products. Supercritical carbon dioxide (SC-CO<sub>2</sub>), a well-known green solvent, was employed in combination with an extrusion system to achieve off-flavor reduction at larger scale. Using various methods such as headspace solid-phase microextraction-gas chromatography mass-spectroscopy (HS-SPME-GC-MS) and sensory evaluation, this study demonstrated that SCFX significantly reduced the off-flavor in pea flour (PF) and pea protein concentrate (PPC). HS-SPME-GC-MS analyses identified major off-flavor compounds in unextruded PF and PPC, including 1-hexanol, 1-octanol, 1-nonanol, nonanal, and 2-alkyl methoxypyrazines. Following SCFX treatment, all these compounds except nonanal were removed. Total off-flavor compound concentration dropped from 923 to 126.5 ng/g in PF, and from 571.7 to 65.9 ng/g in pea protein concentrate PPC after SCFX treatment. Sensory evaluation corroborated these HS-SPME-GC-MS findings, showing that over 80% of the participants could accurately distinguish the extruded samples from the unextruded ones, perceiving the treated samples as having the least beany flavor. These findings highlight the efficacy of SCFX processing in enhancing the sensory profile of pulse-based products by removing off-flavor compounds.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70004\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70004","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是提供一个新的过程,填补了有关提高脉冲利用的知识空白。主要目标是开发一个实验框架,使用高压超临界流体挤出机(SCFX)作为连续生物反应器,在一个步骤中生产脱味和功能优越的脉冲面粉和蛋白质浓缩物。目前的研究重点是利用SCFX加工去除豆类面粉和浓缩蛋白中的异味,提高豆类产品的质量、可接受性和适销性。超临界二氧化碳(SC-CO2)是一种众所周知的绿色溶剂,与挤出系统相结合,可以大规模地减少异味。采用顶空固相微萃取-气相色谱-质谱(HS-SPME-GC-MS)和感官评价等多种方法,研究了SCFX显著降低了豌豆粉(PF)和豌豆蛋白浓缩物(PPC)中的异味。HS-SPME-GC-MS分析鉴定了未挤压的PF和PPC中主要的异味化合物,包括1-己醇、1-辛醇、1-壬醇、壬醛和2-烷基甲氧基吡嗪。在SCFX处理后,除壬醛外,所有这些化合物都被去除。SCFX处理后,PF中总异味化合物浓度从923 ng/g降至126.5 ng/g,豌豆蛋白浓缩PPC中总异味化合物浓度从571.7 ng/g降至65.9 ng/g。感官评价证实了这些HS-SPME-GC-MS的发现,表明超过80%的参与者能够准确地区分挤出的样品和未挤出的样品,认为处理过的样品具有最少的味道。这些发现强调了SCFX处理通过去除异味化合物来增强脉冲产品感官特征的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercritical fluid extrusion of pea flour and pea protein concentrate: Effects on off-flavor removal and sensory improvement

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products. Supercritical carbon dioxide (SC-CO2), a well-known green solvent, was employed in combination with an extrusion system to achieve off-flavor reduction at larger scale. Using various methods such as headspace solid-phase microextraction-gas chromatography mass-spectroscopy (HS-SPME-GC-MS) and sensory evaluation, this study demonstrated that SCFX significantly reduced the off-flavor in pea flour (PF) and pea protein concentrate (PPC). HS-SPME-GC-MS analyses identified major off-flavor compounds in unextruded PF and PPC, including 1-hexanol, 1-octanol, 1-nonanol, nonanal, and 2-alkyl methoxypyrazines. Following SCFX treatment, all these compounds except nonanal were removed. Total off-flavor compound concentration dropped from 923 to 126.5 ng/g in PF, and from 571.7 to 65.9 ng/g in pea protein concentrate PPC after SCFX treatment. Sensory evaluation corroborated these HS-SPME-GC-MS findings, showing that over 80% of the participants could accurately distinguish the extruded samples from the unextruded ones, perceiving the treated samples as having the least beany flavor. These findings highlight the efficacy of SCFX processing in enhancing the sensory profile of pulse-based products by removing off-flavor compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
期刊最新文献
Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells Preparation of poly (butylene adipate-co-terephthalate)/clove essential oil composite antimicrobial film as biodegradable packaging for strawberry preservation Low-pressure cold plasma pretreatment: Impact on quality attributes of “Fan Retief” guava and efficacy against Colletotrichum gloeosporioides Research progress on the diversity, physiological and functional characteristics of lactic acid bacteria in the Nongxiangxing baijiu microbiome The physicochemical characteristics and functional properties of steam explosion modified wheat bran in vitro and in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1