Juan Antonio García Santillán, Carla Elena Mezo-González, Mathilde Gourdel, Mikaël Croyal, Francisco Bolaños-Jiménez
{"title":"饮食引起的肥胖损害大鼠大脑鞘脂代谢,这种代谢功能障碍通过母系和父系遗传给后代。","authors":"Juan Antonio García Santillán, Carla Elena Mezo-González, Mathilde Gourdel, Mikaël Croyal, Francisco Bolaños-Jiménez","doi":"10.1111/jnc.16307","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":"e16307"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diet-Induced Obesity in the Rat Impairs Sphingolipid Metabolism in the Brain and This Metabolic Dysfunction Is Transmitted to the Offspring via Both the Maternal and the Paternal Lineage.\",\"authors\":\"Juan Antonio García Santillán, Carla Elena Mezo-González, Mathilde Gourdel, Mikaël Croyal, Francisco Bolaños-Jiménez\",\"doi\":\"10.1111/jnc.16307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 1\",\"pages\":\"e16307\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16307\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Diet-Induced Obesity in the Rat Impairs Sphingolipid Metabolism in the Brain and This Metabolic Dysfunction Is Transmitted to the Offspring via Both the Maternal and the Paternal Lineage.
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.