Marco Salerno, Virginia Bazzurro, Elena Angeli, Paolo Bianchini, Mohammadmehdi Roushenas, Kimiya Pakravanan, Alberto Diaspro
{"title":"MINFLUX纳米显微镜:一项有希望取得重大突破的“辉煌”技术。","authors":"Marco Salerno, Virginia Bazzurro, Elena Angeli, Paolo Bianchini, Mohammadmehdi Roushenas, Kimiya Pakravanan, Alberto Diaspro","doi":"10.1002/jemt.24765","DOIUrl":null,"url":null,"abstract":"<p><p>MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This \"brilliant\" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MINFLUX Nanoscopy: A \\\"Brilliant\\\" Technique Promising Major Breakthrough.\",\"authors\":\"Marco Salerno, Virginia Bazzurro, Elena Angeli, Paolo Bianchini, Mohammadmehdi Roushenas, Kimiya Pakravanan, Alberto Diaspro\",\"doi\":\"10.1002/jemt.24765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This \\\"brilliant\\\" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24765\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24765","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
MINFLUX Nanoscopy: A "Brilliant" Technique Promising Major Breakthrough.
MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This "brilliant" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.