基于机器学习方法的切除组织肺微生物组分类非小细胞肺癌亚型。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2025-01-17 DOI:10.1038/s41540-025-00491-4
Pragya Kashyap, Kalbhavi Vadhi Raj, Jyoti Sharma, Naveen Dutt, Pankaj Yadav
{"title":"基于机器学习方法的切除组织肺微生物组分类非小细胞肺癌亚型。","authors":"Pragya Kashyap, Kalbhavi Vadhi Raj, Jyoti Sharma, Naveen Dutt, Pankaj Yadav","doi":"10.1038/s41540-025-00491-4","DOIUrl":null,"url":null,"abstract":"<p><p>Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz. logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"11"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods.\",\"authors\":\"Pragya Kashyap, Kalbhavi Vadhi Raj, Jyoti Sharma, Naveen Dutt, Pankaj Yadav\",\"doi\":\"10.1038/s41540-025-00491-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz. logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"11\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00491-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00491-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

腺癌(AC)和鳞状细胞癌(SCC)的分类对细胞病理学家提出了重大挑战,通常需要临床检查和活检,从而延迟治疗的开始。为了解决这个问题,我们开发了一种基于机器学习的方法,利用切除的AC和SCC患者的肺组织微生物组进行亚型分类。利用LEfSe对差异富集类群进行了鉴定,发现了10个潜在的微生物标记。随后应用线性判别分析(LDA)来提高类间可分性。接下来,对六种不同的监督分类算法进行基准测试,即逻辑回归、naïve-bayes、随机森林、极端梯度增强(XGBoost)、k近邻和深度神经网络。值得注意的是,XGBoost的准确率为76.25%,AUROC (area-under-receiver-operating-characteristic)为0.81,特异性为69%,灵敏度为76%,优于其他5种使用lda变换特征的分类算法。在独立数据集上的验证证实了其稳健性,AUROC为0.71,假阳性和假阴性最小。这项研究首次使用肺组织微生物组对AC和SCC亚型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods.

Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers. Linear discriminant analysis (LDA) was subsequently applied to enhance inter-class separability. Next, benchmarking was performed across six different supervised-classification algorithms viz. logistic-regression, naïve-bayes, random-forest, extreme-gradient-boost (XGBoost), k-nearest neighbor, and deep neural network. Noteworthy, XGBoost, with an accuracy of 76.25%, and AUROC (area-under-receiver-operating-characteristic) of 0.81 with 69% specificity and 76% sensitivity, outperform the other five classification algorithms using LDA-transformed features. Validation on an independent dataset confirmed its robustness with an AUROC of 0.71, with minimal false positives and negatives. This study is the first to classify AC and SCC subtypes using lung-tissue microbiome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection. Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series. Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity. Overall biomass yield on multiple nutrient sources. Modeling critical dosing strategies for stromal-induced resistance to cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1