鞘脂长链碱基作为橄榄果脱落细胞死亡的介质。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70061
Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez
{"title":"鞘脂长链碱基作为橄榄果脱落细胞死亡的介质。","authors":"Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez","doi":"10.1111/ppl.70061","DOIUrl":null,"url":null,"abstract":"<p><p>Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70061"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sphingolipid long chain bases as mediators of cell death in olive fruit abscission.\",\"authors\":\"Beatriz Briegas, Maria C Camarero, Jorge Corbacho, Juana Labrador, Victoria Sanchez-Vera, Marina Gavilanes-Ruiz, Mariana Saucedo-García, Maria C Gomez-Jimenez\",\"doi\":\"10.1111/ppl.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70061\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70061\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物鞘脂是一种亲脂性膜成分,对不同的细胞功能至关重要,但它们也在植物发育的各个方面作为信号分子。然而,植物鞘脂与脱落之间的相互作用在很大程度上仍未被表征。本文研究了鞘脂在橄榄果实脱落区调控果实脱落过程中的可能作用。为此,通过外源鞘脂长链碱基(LCB)或生物合成抑制剂调控鞘脂水平,研究了它们对橄榄果实脱落、鞘脂LCB/基因表达、激素、活性氧(ROS)和细胞死亡水平的影响。我们的数据表明外源鞘氨氨酸(d18:0)诱导果实脱落,而鞘氨醇(d18:1)或植鞘氨醇(t18:0)或其磷酸化衍生物对果实脱落没有影响。此外,抑制LCB激酶或神经酰胺合成酶会增加AZ中鞘脂LCB水平,从而降低果实断裂强度。在富含水杨酸(SA)和茉莉酸(JA)的水杨酸中,这种诱导果实脱落与ROS水平升高和细胞死亡有关。同样,程序性细胞死亡(PCD)在果皮脱落的远端也特别明显。这些数据表明,内源性d18:0在果皮脱落过程中,作为SA/JA信号通路上游的信号分子,在介导PCD的过程中起着关键的细胞作用。总之,本文的研究结果揭示了PCD和植物鞘脂LCBs之间的复杂联系,揭示了它们在脱落过程中的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sphingolipid long chain bases as mediators of cell death in olive fruit abscission.

Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit. To this end, sphingolipid levels were manipulated through the application of exogenous sphingolipid long-chain bases (LCBs) or biosynthesis inhibitors, and their effects on fruit abscission as well as sphingolipid LCB/gene expression, hormones, reactive oxygen species (ROS) and cell death levels were examined in the AZ of olive fruit. Our data indicated that exogenous sphinganine (d18:0) induced fruit abscission, whereas the application of sphingosine (d18:1) or phytosphingosine (t18:0) or their phosphorylated derivatives did not have an effect on fruit abscission. Moreover, inhibition of LCB kinase or ceramide synthase, which increases sphingolipid LCB levels in the AZ, reduced fruit break strength. This induction of fruit abscission is associated with elevated ROS levels and cell death in the AZ enriched in salicylic acid (SA) and jasmonic acid (JA). Along the same line, programmed cell death (PCD) was particularly evident on the distal side of the AZ. These data suggest that endogenous d18:0 plays a key cellular role as signaling molecule functioning upstream of the SA/JA signaling pathway in mediating PCD spatially regulated in the AZ during fruit abscission. Overall, the findings reported here provide insight into the complex connection between PCD and plant sphingolipid LCBs, uncovering their interaction in the abscission process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1