化学文库合成工艺流程优化。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-12-17 DOI:10.1039/d4dd00327f
Qianxiang Ai, Fanwang Meng, Runzhong Wang, J Cullen Klein, Alexander G Godfrey, Connor W Coley
{"title":"化学文库合成工艺流程优化。","authors":"Qianxiang Ai, Fanwang Meng, Runzhong Wang, J Cullen Klein, Alexander G Godfrey, Connor W Coley","doi":"10.1039/d4dd00327f","DOIUrl":null,"url":null,"abstract":"<p><p>Automated chemistry platforms hold the potential to enable large-scale organic synthesis campaigns, such as producing a library of compounds for biological evaluation. The efficiency of such platforms will depend on the schedule according to which the synthesis operations are executed. In this work, we study the scheduling problem for chemical library synthesis, where operations from interdependent synthetic routes are scheduled to minimize the makespan-the total duration of the synthesis campaign. We formalize this problem as a flexible job-shop scheduling problem with chemistry-relevant constraints in the form of a mixed integer linear program (MILP), which we then solve in order to design an optimized schedule. The scheduler's ability to produce valid, optimal schedules is demonstrated by 720 simulated scheduling instances for realistically accessible chemical libraries. Reductions in makespan up to 58%, with an average reduction of 20%, are observed compared to the baseline scheduling approach.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Schedule optimization for chemical library synthesis.\",\"authors\":\"Qianxiang Ai, Fanwang Meng, Runzhong Wang, J Cullen Klein, Alexander G Godfrey, Connor W Coley\",\"doi\":\"10.1039/d4dd00327f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated chemistry platforms hold the potential to enable large-scale organic synthesis campaigns, such as producing a library of compounds for biological evaluation. The efficiency of such platforms will depend on the schedule according to which the synthesis operations are executed. In this work, we study the scheduling problem for chemical library synthesis, where operations from interdependent synthetic routes are scheduled to minimize the makespan-the total duration of the synthesis campaign. We formalize this problem as a flexible job-shop scheduling problem with chemistry-relevant constraints in the form of a mixed integer linear program (MILP), which we then solve in order to design an optimized schedule. The scheduler's ability to produce valid, optimal schedules is demonstrated by 720 simulated scheduling instances for realistically accessible chemical libraries. Reductions in makespan up to 58%, with an average reduction of 20%, are observed compared to the baseline scheduling approach.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dd00327f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00327f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自动化化学平台具有实现大规模有机合成活动的潜力,例如生产用于生物评价的化合物库。这种平台的效率将取决于执行合成操作的时间表。在这项工作中,我们研究了化学库合成的调度问题,其中来自相互依赖的合成路线的操作被调度以最小化合成活动的总持续时间。我们将该问题形式化为具有化学相关约束的柔性作业车间调度问题,并以混合整数线性规划(MILP)的形式对其进行求解,从而设计出最优调度。通过720个实际可访问的化学库的模拟调度实例,证明了调度程序产生有效、最优调度的能力。与基线调度方法相比,最大作业时间减少了58%,平均减少了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Schedule optimization for chemical library synthesis.

Automated chemistry platforms hold the potential to enable large-scale organic synthesis campaigns, such as producing a library of compounds for biological evaluation. The efficiency of such platforms will depend on the schedule according to which the synthesis operations are executed. In this work, we study the scheduling problem for chemical library synthesis, where operations from interdependent synthetic routes are scheduled to minimize the makespan-the total duration of the synthesis campaign. We formalize this problem as a flexible job-shop scheduling problem with chemistry-relevant constraints in the form of a mixed integer linear program (MILP), which we then solve in order to design an optimized schedule. The scheduler's ability to produce valid, optimal schedules is demonstrated by 720 simulated scheduling instances for realistically accessible chemical libraries. Reductions in makespan up to 58%, with an average reduction of 20%, are observed compared to the baseline scheduling approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1