二维流动分析模型最优参数确定算法的发展

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-01 DOI:10.1016/j.envsoft.2025.106331
Eun Taek Shin , Se Hyuck An , Sung Won Park , Seung Oh Lee , Chang Geun Song
{"title":"二维流动分析模型最优参数确定算法的发展","authors":"Eun Taek Shin ,&nbsp;Se Hyuck An ,&nbsp;Sung Won Park ,&nbsp;Seung Oh Lee ,&nbsp;Chang Geun Song","doi":"10.1016/j.envsoft.2025.106331","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate parameter selection is crucial for reliable predictions in fluid dynamics, environmental transport, and urban flood prediction. Traditional manual methods are time-consuming and prone to errors. This study introduces an automated algorithm to optimize roughness and viscosity coefficients in two-dimensional flow analysis models. Our algorithm automates the simulation process within specified parameter ranges, using Root Mean Square Error (RMSE) to compare results with experimental data. Applied to a diverging channel and an abruptly widening channel, the algorithm successfully identified optimal parameters, accurately matching experimental observations. Heatmaps visualize RMSE values, facilitating optimal parameter identification. This advancement enhances model efficiency and accuracy, streamlining the parameter determination process and offering a robust method for hydraulic modeling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106331"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of optimal parameter determination algorithm for two-dimensional flow analysis model\",\"authors\":\"Eun Taek Shin ,&nbsp;Se Hyuck An ,&nbsp;Sung Won Park ,&nbsp;Seung Oh Lee ,&nbsp;Chang Geun Song\",\"doi\":\"10.1016/j.envsoft.2025.106331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate parameter selection is crucial for reliable predictions in fluid dynamics, environmental transport, and urban flood prediction. Traditional manual methods are time-consuming and prone to errors. This study introduces an automated algorithm to optimize roughness and viscosity coefficients in two-dimensional flow analysis models. Our algorithm automates the simulation process within specified parameter ranges, using Root Mean Square Error (RMSE) to compare results with experimental data. Applied to a diverging channel and an abruptly widening channel, the algorithm successfully identified optimal parameters, accurately matching experimental observations. Heatmaps visualize RMSE values, facilitating optimal parameter identification. This advancement enhances model efficiency and accuracy, streamlining the parameter determination process and offering a robust method for hydraulic modeling.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106331\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225000155\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000155","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

准确的参数选择对于流体动力学、环境运输和城市洪水预测的可靠预测至关重要。传统的手工方法既费时又容易出错。本文介绍了一种二维流动分析模型中粗糙度和粘度系数的自动优化算法。我们的算法在指定的参数范围内自动模拟过程,使用均方根误差(RMSE)将结果与实验数据进行比较。将该算法应用于发散信道和突然加宽信道,成功地识别出最优参数,与实验观测值准确匹配。热图可视化RMSE值,便于最佳参数识别。这一进步提高了模型的效率和准确性,简化了参数确定过程,并为水力建模提供了一种鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of optimal parameter determination algorithm for two-dimensional flow analysis model
Accurate parameter selection is crucial for reliable predictions in fluid dynamics, environmental transport, and urban flood prediction. Traditional manual methods are time-consuming and prone to errors. This study introduces an automated algorithm to optimize roughness and viscosity coefficients in two-dimensional flow analysis models. Our algorithm automates the simulation process within specified parameter ranges, using Root Mean Square Error (RMSE) to compare results with experimental data. Applied to a diverging channel and an abruptly widening channel, the algorithm successfully identified optimal parameters, accurately matching experimental observations. Heatmaps visualize RMSE values, facilitating optimal parameter identification. This advancement enhances model efficiency and accuracy, streamlining the parameter determination process and offering a robust method for hydraulic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
ZHPO-LightXBoost an integrated prediction model based on small samples for pesticide residues in crops A machine learning model integrating spatiotemporal attention and residual learning for predicting periodic air pollutant concentrations AquaNutriOpt II: A multi-period bi-objective nutrient optimization python tool for controlling harmful algal blooms — A case study of Lake Okeechobee WigglyRivers: A tool to characterize the multiscale nature of meandering channels On the future of hydroecological models of everywhere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1