可调节机器人顺应性和精度的神经力学解决方案

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2025-01-22 DOI:10.1126/scirobotics.adp2356
Ignacio Abadía, Alice Bruel, Grégoire Courtine, Auke J. Ijspeert, Eduardo Ros, Niceto R. Luque
{"title":"可调节机器人顺应性和精度的神经力学解决方案","authors":"Ignacio Abadía,&nbsp;Alice Bruel,&nbsp;Grégoire Courtine,&nbsp;Auke J. Ijspeert,&nbsp;Eduardo Ros,&nbsp;Niceto R. Luque","doi":"10.1126/scirobotics.adp2356","DOIUrl":null,"url":null,"abstract":"<div >Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective. Nervous regions such as the cerebellum facilitate learning, adaptation, and coordination of our motor responses, ultimately driven by muscle activation. Muscles, in turn, self-stabilize motion through mechanical viscoelasticity. In addition, the agonist-antagonist arrangement of muscles surrounding joints enables cocontraction, which can be regulated to enhance motion accuracy and adapt joint stiffness, thereby providing impedance modulation and broadening the motor repertoire. Here, we propose a control solution that harnesses neuromechanics to enable adjustable robot motor behavior. Our solution integrates a muscle model that replicates mechanical viscoelasticity and cocontraction together with a cerebellar network providing motor adaptation. The resulting cerebello-muscular controller drives the robot through torque commands in a feedback control loop. Changes in cocontraction modify the muscle dynamics, and the cerebellum provides motor adaptation without relying on prior analytical solutions, driving the robot in different motor tasks, including payload perturbations and operation across unknown terrains. Experimental results show that cocontraction modulates robot stiffness, performance accuracy, and robustness against external perturbations. Through cocontraction modulation, our cerebello-muscular torque controller enables a broad spectrum of robot motor behavior.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 98","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neuromechanics solution for adjustable robot compliance and accuracy\",\"authors\":\"Ignacio Abadía,&nbsp;Alice Bruel,&nbsp;Grégoire Courtine,&nbsp;Auke J. Ijspeert,&nbsp;Eduardo Ros,&nbsp;Niceto R. Luque\",\"doi\":\"10.1126/scirobotics.adp2356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective. Nervous regions such as the cerebellum facilitate learning, adaptation, and coordination of our motor responses, ultimately driven by muscle activation. Muscles, in turn, self-stabilize motion through mechanical viscoelasticity. In addition, the agonist-antagonist arrangement of muscles surrounding joints enables cocontraction, which can be regulated to enhance motion accuracy and adapt joint stiffness, thereby providing impedance modulation and broadening the motor repertoire. Here, we propose a control solution that harnesses neuromechanics to enable adjustable robot motor behavior. Our solution integrates a muscle model that replicates mechanical viscoelasticity and cocontraction together with a cerebellar network providing motor adaptation. The resulting cerebello-muscular controller drives the robot through torque commands in a feedback control loop. Changes in cocontraction modify the muscle dynamics, and the cerebellum provides motor adaptation without relying on prior analytical solutions, driving the robot in different motor tasks, including payload perturbations and operation across unknown terrains. Experimental results show that cocontraction modulates robot stiffness, performance accuracy, and robustness against external perturbations. Through cocontraction modulation, our cerebello-muscular torque controller enables a broad spectrum of robot motor behavior.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 98\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.adp2356\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adp2356","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

机器人必须调整其运动行为以适应不断变化的环境和多变的任务要求,才能成功地在现实世界中操作并与人类进行物理互动。因此,机器人技术致力于实现广泛的可调节运动行为,旨在模仿人类在非结构化场景中的功能。在人类中,运动行为源于中枢神经系统和身体生物力学的综合作用;运动必须从神经力学的角度来理解。神经区域如小脑促进学习、适应和协调我们的运动反应,最终由肌肉激活驱动。反过来,肌肉通过机械粘弹性自我稳定运动。此外,关节周围肌肉的激动剂-拮抗剂排列使收缩能够被调节,以提高运动精度和适应关节刚度,从而提供阻抗调节和扩大运动曲目。在这里,我们提出了一种控制方案,利用神经力学来实现可调节的机器人运动行为。我们的解决方案集成了一个复制机械粘弹性和收缩的肌肉模型,以及一个提供运动适应的小脑网络。由此产生的小脑肌肉控制器通过反馈控制回路中的扭矩命令驱动机器人。收缩的变化改变了肌肉动力学,小脑提供运动适应,而不依赖于先前的分析解决方案,驱动机器人完成不同的运动任务,包括有效载荷扰动和在未知地形上的操作。实验结果表明,收缩调节了机器人的刚度、性能精度和对外部扰动的鲁棒性。通过收缩调节,我们的小脑-肌肉扭矩控制器可以实现广泛的机器人运动行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neuromechanics solution for adjustable robot compliance and accuracy
Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective. Nervous regions such as the cerebellum facilitate learning, adaptation, and coordination of our motor responses, ultimately driven by muscle activation. Muscles, in turn, self-stabilize motion through mechanical viscoelasticity. In addition, the agonist-antagonist arrangement of muscles surrounding joints enables cocontraction, which can be regulated to enhance motion accuracy and adapt joint stiffness, thereby providing impedance modulation and broadening the motor repertoire. Here, we propose a control solution that harnesses neuromechanics to enable adjustable robot motor behavior. Our solution integrates a muscle model that replicates mechanical viscoelasticity and cocontraction together with a cerebellar network providing motor adaptation. The resulting cerebello-muscular controller drives the robot through torque commands in a feedback control loop. Changes in cocontraction modify the muscle dynamics, and the cerebellum provides motor adaptation without relying on prior analytical solutions, driving the robot in different motor tasks, including payload perturbations and operation across unknown terrains. Experimental results show that cocontraction modulates robot stiffness, performance accuracy, and robustness against external perturbations. Through cocontraction modulation, our cerebello-muscular torque controller enables a broad spectrum of robot motor behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging Autonomous robotic organizations for marine operations Magnetically actuated dexterous tools for minimally invasive operation inside the brain Monopedal robot branch-to-branch leaping and landing inspired by squirrel balance control Miniature deep-sea morphable robot with multimodal locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1