Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Zahra Dourandish
{"title":"Electrochemical Determination of Doxorubicin in the Presence of Dacarbazine Using MWCNTs/ZnO Nanocomposite Modified Disposable Screen-Printed Electrode.","authors":"Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Zahra Dourandish","doi":"10.3390/bios15010060","DOIUrl":null,"url":null,"abstract":"<p><p>In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010060","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemical Determination of Doxorubicin in the Presence of Dacarbazine Using MWCNTs/ZnO Nanocomposite Modified Disposable Screen-Printed Electrode.
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.