Priyanka Pradeep Patil, Sandeesha Kodru, Milán Szabó, Imre Vass
{"title":"Investigation of the effect of salt stress on photosynthetic electron transport pathways in the Synechocystis PCC 6803 cyanobacterium.","authors":"Priyanka Pradeep Patil, Sandeesha Kodru, Milán Szabó, Imre Vass","doi":"10.1111/ppl.70066","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools. Exposure of cells to various NaCl concentrations (200 mM to 1 M) revealed the inhibition of Photosystem II (PSII) activity at the water oxidizing complex and between the Q<sub>A</sub> and Q<sub>B</sub> electron acceptors. In contrast to the inhibition of PSII, electron flow through Photosystem I (PSI) was accelerated, indicating enhanced cyclic electron flow. The oxygen-evolving capacity of the cells was inhibited to a larger extent when only CO<sub>2</sub> was the final electron acceptor in the Calvin-Benson-Bassham (CBB) cycle than in the presence of the PSII electron acceptor DMBQ, suggesting important NaCl inhibitory site(s) downstream of PSI. Measurements of NADPH kinetics revealed NaCl-induced inhibition of light-induced production of NADPH as well as retardation of NADPH consumption both in the light and in the initial dark period after switching off the light. Chlorophyll fluorescence kinetics, measured in parallel with NADPH fluorescence, showed the enhancement of post-illumination fluorescence rise up to 500 mM NaCl, which was however inhibited at higher NaCl concentrations. Our results show, for the first time, that NaCl inhibits the activity of the CBB cycle at least at two different sites, and confirm earlier results about the NaCl-induced inhibition of the PSII donor and acceptor side and the enhancement of electron flow through PSI.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70066"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Investigation of the effect of salt stress on photosynthetic electron transport pathways in the Synechocystis PCC 6803 cyanobacterium.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools. Exposure of cells to various NaCl concentrations (200 mM to 1 M) revealed the inhibition of Photosystem II (PSII) activity at the water oxidizing complex and between the QA and QB electron acceptors. In contrast to the inhibition of PSII, electron flow through Photosystem I (PSI) was accelerated, indicating enhanced cyclic electron flow. The oxygen-evolving capacity of the cells was inhibited to a larger extent when only CO2 was the final electron acceptor in the Calvin-Benson-Bassham (CBB) cycle than in the presence of the PSII electron acceptor DMBQ, suggesting important NaCl inhibitory site(s) downstream of PSI. Measurements of NADPH kinetics revealed NaCl-induced inhibition of light-induced production of NADPH as well as retardation of NADPH consumption both in the light and in the initial dark period after switching off the light. Chlorophyll fluorescence kinetics, measured in parallel with NADPH fluorescence, showed the enhancement of post-illumination fluorescence rise up to 500 mM NaCl, which was however inhibited at higher NaCl concentrations. Our results show, for the first time, that NaCl inhibits the activity of the CBB cycle at least at two different sites, and confirm earlier results about the NaCl-induced inhibition of the PSII donor and acceptor side and the enhancement of electron flow through PSI.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.