开启长期稳定性:抑制锌金属水电池中锌枝晶生长的电解质添加剂

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2025-01-15 DOI:10.1016/j.cej.2025.160017
Hee Jae Kim , Sun Kim , Jun Ho Yu , Jae-Hong Lim , Hitoshi Yashiro , Seung-Taek Myung
{"title":"开启长期稳定性:抑制锌金属水电池中锌枝晶生长的电解质添加剂","authors":"Hee Jae Kim ,&nbsp;Sun Kim ,&nbsp;Jun Ho Yu ,&nbsp;Jae-Hong Lim ,&nbsp;Hitoshi Yashiro ,&nbsp;Seung-Taek Myung","doi":"10.1016/j.cej.2025.160017","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) have attracted great attention for energy storage because of the safety of zinc metal in ambient air. However, the growth of zinc dendrites during repeated electrochemical cycles have hindered their practical use. To address this issue, we introduced ZnBr<sub>2</sub> as an additive in an aqueous 1 M ZnSO<sub>4</sub> electrolyte, effectively suppressing the dendritic growth on the surface of the zinc-metal anode. Significant improvement in Zn||Zn symmetric cell tests using 10 wt% ZnBr<sub>2</sub>-added electrolyte was observed, with a lifespan of 12,500 cycles achieved even at a high current density of 50 mA cm<sup>−2</sup> with an areal capacity of 1 mAh cm<sup>−2</sup>. Raman spectroscopy reveals formation of HBr in the electrolyte after 12 h deposition of zinc. The presence of HBr in the electrolyte effectively suppresses the dendritic growth of zinc, as visualized by an <em>operando</em> beaker-cell test and synchrotron tomography. We further demonstrated the compatibility and excellent rate performance of the additive-based electrolyte in Zn || NaV<sub>3</sub>O<sub>8</sub> full cells. Our findings provide a simple and cost-effective method to suppress dendritic growth of zinc in zinc-metal batteries.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"506 ","pages":"Article 160017"},"PeriodicalIF":13.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking long-term stability: Electrolyte additives for suppressing zinc dendrite growth in aqueous zinc metal batteries\",\"authors\":\"Hee Jae Kim ,&nbsp;Sun Kim ,&nbsp;Jun Ho Yu ,&nbsp;Jae-Hong Lim ,&nbsp;Hitoshi Yashiro ,&nbsp;Seung-Taek Myung\",\"doi\":\"10.1016/j.cej.2025.160017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-ion batteries (AZIBs) have attracted great attention for energy storage because of the safety of zinc metal in ambient air. However, the growth of zinc dendrites during repeated electrochemical cycles have hindered their practical use. To address this issue, we introduced ZnBr<sub>2</sub> as an additive in an aqueous 1 M ZnSO<sub>4</sub> electrolyte, effectively suppressing the dendritic growth on the surface of the zinc-metal anode. Significant improvement in Zn||Zn symmetric cell tests using 10 wt% ZnBr<sub>2</sub>-added electrolyte was observed, with a lifespan of 12,500 cycles achieved even at a high current density of 50 mA cm<sup>−2</sup> with an areal capacity of 1 mAh cm<sup>−2</sup>. Raman spectroscopy reveals formation of HBr in the electrolyte after 12 h deposition of zinc. The presence of HBr in the electrolyte effectively suppresses the dendritic growth of zinc, as visualized by an <em>operando</em> beaker-cell test and synchrotron tomography. We further demonstrated the compatibility and excellent rate performance of the additive-based electrolyte in Zn || NaV<sub>3</sub>O<sub>8</sub> full cells. Our findings provide a simple and cost-effective method to suppress dendritic growth of zinc in zinc-metal batteries.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"506 \",\"pages\":\"Article 160017\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894725008162\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725008162","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking long-term stability: Electrolyte additives for suppressing zinc dendrite growth in aqueous zinc metal batteries
Aqueous zinc-ion batteries (AZIBs) have attracted great attention for energy storage because of the safety of zinc metal in ambient air. However, the growth of zinc dendrites during repeated electrochemical cycles have hindered their practical use. To address this issue, we introduced ZnBr2 as an additive in an aqueous 1 M ZnSO4 electrolyte, effectively suppressing the dendritic growth on the surface of the zinc-metal anode. Significant improvement in Zn||Zn symmetric cell tests using 10 wt% ZnBr2-added electrolyte was observed, with a lifespan of 12,500 cycles achieved even at a high current density of 50 mA cm−2 with an areal capacity of 1 mAh cm−2. Raman spectroscopy reveals formation of HBr in the electrolyte after 12 h deposition of zinc. The presence of HBr in the electrolyte effectively suppresses the dendritic growth of zinc, as visualized by an operando beaker-cell test and synchrotron tomography. We further demonstrated the compatibility and excellent rate performance of the additive-based electrolyte in Zn || NaV3O8 full cells. Our findings provide a simple and cost-effective method to suppress dendritic growth of zinc in zinc-metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
From low conductivity to high energy efficiency: The role of conductive polymers in phase change materials Isomeric 2D and 3D covalent organic frameworks induced by inter-modular hydrogen bonds for photocatalytic CO2 reduction Subnanometer ultra-thin magnetic nanosheets for highly sensitive magnetic resonance angiography Solvent-engineered in-situ heterogenization of copper-based sulfides for broadening electromagnetic wave absorption Biodegradation of cephalexin in wastewater by Glutamicibacter sp. S2 and Herbaspirillum sp. S8: Performance, pathway, genomes and synergistic bio-augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1