定量快速检测的创新:健康风险的早期预测。

IF 3 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Current Problems in Cardiology Pub Date : 2025-02-01 DOI:10.1016/j.cpcardiol.2025.103000
Khaled S Alleilem, Saad Almousa, Mohammed Alissa, Faris Alrumaihi, Hajed Obaid Alharbi, Nahlah Makki Almansour, Leen A Aldaiji, Amr S Abouzied, Mahdi H Alsugoor, Omer Alasmari, Marwh Jamal Albakawi, Jens Stride
{"title":"定量快速检测的创新:健康风险的早期预测。","authors":"Khaled S Alleilem, Saad Almousa, Mohammed Alissa, Faris Alrumaihi, Hajed Obaid Alharbi, Nahlah Makki Almansour, Leen A Aldaiji, Amr S Abouzied, Mahdi H Alsugoor, Omer Alasmari, Marwh Jamal Albakawi, Jens Stride","doi":"10.1016/j.cpcardiol.2025.103000","DOIUrl":null,"url":null,"abstract":"<p><p>As health monitoring becomes increasingly intricate, the demand for innovative solutions to predict and assess health status is more pressing than ever. This review focuses on the transformative potential of multi-sensor technologies in health monitoring, emphasizing their role in early health status prediction. By integrating diverse sensor types ranging from wearable fitness trackers to implantable devices and environmental monitors healthcare professionals can gain a richer, more nuanced understanding of an individual's physiological state. We analyze various configurations of multi-sensor networks and their efficacy in identifying early indicators of health issues, such as cardiovascular diseases, diabetes, and respiratory ailments. For example, the combination of biometric sensors that track vital signs with environmental data on pollutants can yield invaluable insights into a patient's overall health. This integrated approach not only improves the accuracy of health assessments but also facilitates timely interventions. Furthermore, we address the challenges inherent in multi-sensor systems, including data integration, device interoperability, and the need for advanced algorithms capable of processing complex datasets. Recent advancements in machine learning and artificial intelligence are underscored as pivotal in enhancing the capabilities of these technologies for predictive health analytics. Ultimately, this review highlights how multi-sensor systems can redefine early health status prediction, paving the way for proactive healthcare strategies that significantly improve patient outcomes and optimize healthcare delivery.</p>","PeriodicalId":51006,"journal":{"name":"Current Problems in Cardiology","volume":" ","pages":"103000"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in Quantitative Rapid Testing: Early Prediction of Health Risks.\",\"authors\":\"Khaled S Alleilem, Saad Almousa, Mohammed Alissa, Faris Alrumaihi, Hajed Obaid Alharbi, Nahlah Makki Almansour, Leen A Aldaiji, Amr S Abouzied, Mahdi H Alsugoor, Omer Alasmari, Marwh Jamal Albakawi, Jens Stride\",\"doi\":\"10.1016/j.cpcardiol.2025.103000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As health monitoring becomes increasingly intricate, the demand for innovative solutions to predict and assess health status is more pressing than ever. This review focuses on the transformative potential of multi-sensor technologies in health monitoring, emphasizing their role in early health status prediction. By integrating diverse sensor types ranging from wearable fitness trackers to implantable devices and environmental monitors healthcare professionals can gain a richer, more nuanced understanding of an individual's physiological state. We analyze various configurations of multi-sensor networks and their efficacy in identifying early indicators of health issues, such as cardiovascular diseases, diabetes, and respiratory ailments. For example, the combination of biometric sensors that track vital signs with environmental data on pollutants can yield invaluable insights into a patient's overall health. This integrated approach not only improves the accuracy of health assessments but also facilitates timely interventions. Furthermore, we address the challenges inherent in multi-sensor systems, including data integration, device interoperability, and the need for advanced algorithms capable of processing complex datasets. Recent advancements in machine learning and artificial intelligence are underscored as pivotal in enhancing the capabilities of these technologies for predictive health analytics. Ultimately, this review highlights how multi-sensor systems can redefine early health status prediction, paving the way for proactive healthcare strategies that significantly improve patient outcomes and optimize healthcare delivery.</p>\",\"PeriodicalId\":51006,\"journal\":{\"name\":\"Current Problems in Cardiology\",\"volume\":\" \",\"pages\":\"103000\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Problems in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cpcardiol.2025.103000\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cpcardiol.2025.103000","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovations in Quantitative Rapid Testing: Early Prediction of Health Risks.

As health monitoring becomes increasingly intricate, the demand for innovative solutions to predict and assess health status is more pressing than ever. This review focuses on the transformative potential of multi-sensor technologies in health monitoring, emphasizing their role in early health status prediction. By integrating diverse sensor types ranging from wearable fitness trackers to implantable devices and environmental monitors healthcare professionals can gain a richer, more nuanced understanding of an individual's physiological state. We analyze various configurations of multi-sensor networks and their efficacy in identifying early indicators of health issues, such as cardiovascular diseases, diabetes, and respiratory ailments. For example, the combination of biometric sensors that track vital signs with environmental data on pollutants can yield invaluable insights into a patient's overall health. This integrated approach not only improves the accuracy of health assessments but also facilitates timely interventions. Furthermore, we address the challenges inherent in multi-sensor systems, including data integration, device interoperability, and the need for advanced algorithms capable of processing complex datasets. Recent advancements in machine learning and artificial intelligence are underscored as pivotal in enhancing the capabilities of these technologies for predictive health analytics. Ultimately, this review highlights how multi-sensor systems can redefine early health status prediction, paving the way for proactive healthcare strategies that significantly improve patient outcomes and optimize healthcare delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Problems in Cardiology
Current Problems in Cardiology 医学-心血管系统
CiteScore
4.80
自引率
2.40%
发文量
392
审稿时长
6 days
期刊介绍: Under the editorial leadership of noted cardiologist Dr. Hector O. Ventura, Current Problems in Cardiology provides focused, comprehensive coverage of important clinical topics in cardiology. Each monthly issues, addresses a selected clinical problem or condition, including pathophysiology, invasive and noninvasive diagnosis, drug therapy, surgical management, and rehabilitation; or explores the clinical applications of a diagnostic modality or a particular category of drugs. Critical commentary from the distinguished editorial board accompanies each monograph, providing readers with additional insights. An extensive bibliography in each issue saves hours of library research.
期刊最新文献
Hereditary transthyretin amyloidosis (ATTRv) Editorial Board Table of Contents Title Page Editor’s Message
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1