利用基于相似性的模型聚合实现安全、准确的个性化联合学习

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-03-20 DOI:10.1109/TSUSC.2024.3403427
Zhouyong Tan;Junqing Le;Fan Yang;Min Huang;Tao Xiang;Xiaofeng Liao
{"title":"利用基于相似性的模型聚合实现安全、准确的个性化联合学习","authors":"Zhouyong Tan;Junqing Le;Fan Yang;Min Huang;Tao Xiang;Xiaofeng Liao","doi":"10.1109/TSUSC.2024.3403427","DOIUrl":null,"url":null,"abstract":"Personalized federated learning (PFL) combines client needs and data characteristics to train personalized models for local clients. However, the most of previous PFL schemes encountered challenges such as low model prediction accuracy and privacy leakage when applied to practical datasets. Besides, the existing privacy protection methods fail to achieve satisfactory results in terms of model prediction accuracy and security simultaneously. In this paper, we propose a <u>P</u>rivacy-preserving <u>P</u>ersonalized <u>F</u>ederated <u>L</u>earning under <u>S</u>ecure <u>M</u>ulti-party <u>C</u>omputation (SMC-PPFL), which can preserve privacy while obtaining a local personalized model with high prediction accuracy. In SMC-PPFL, noise perturbation is utilized to protect similarity computation, and secure multi-party computation is employed for model sub-aggregations. This combination ensures that clients’ privacy is preserved, and the computed values remain unbiased without compromising security. Then, we propose a weighted sub-aggregation strategy based on the similarity of clients and introduce a regularization term in the local training to improve prediction accuracy. Finally, we evaluate the performance of SMC-PPFL on three common datasets. The experimental results show that SMC-PPFL achieves <inline-formula><tex-math>$2\\%\\!\\sim\\! 15\\%$</tex-math></inline-formula> higher prediction accuracy compared to the previous PFL schemes. Besides, the security analysis also verifies that SMC-PPFL can resist model inversion attacks and membership inference attacks.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 1","pages":"132-145"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure and Accurate Personalized Federated Learning With Similarity-Based Model Aggregation\",\"authors\":\"Zhouyong Tan;Junqing Le;Fan Yang;Min Huang;Tao Xiang;Xiaofeng Liao\",\"doi\":\"10.1109/TSUSC.2024.3403427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized federated learning (PFL) combines client needs and data characteristics to train personalized models for local clients. However, the most of previous PFL schemes encountered challenges such as low model prediction accuracy and privacy leakage when applied to practical datasets. Besides, the existing privacy protection methods fail to achieve satisfactory results in terms of model prediction accuracy and security simultaneously. In this paper, we propose a <u>P</u>rivacy-preserving <u>P</u>ersonalized <u>F</u>ederated <u>L</u>earning under <u>S</u>ecure <u>M</u>ulti-party <u>C</u>omputation (SMC-PPFL), which can preserve privacy while obtaining a local personalized model with high prediction accuracy. In SMC-PPFL, noise perturbation is utilized to protect similarity computation, and secure multi-party computation is employed for model sub-aggregations. This combination ensures that clients’ privacy is preserved, and the computed values remain unbiased without compromising security. Then, we propose a weighted sub-aggregation strategy based on the similarity of clients and introduce a regularization term in the local training to improve prediction accuracy. Finally, we evaluate the performance of SMC-PPFL on three common datasets. The experimental results show that SMC-PPFL achieves <inline-formula><tex-math>$2\\\\%\\\\!\\\\sim\\\\! 15\\\\%$</tex-math></inline-formula> higher prediction accuracy compared to the previous PFL schemes. Besides, the security analysis also verifies that SMC-PPFL can resist model inversion attacks and membership inference attacks.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"10 1\",\"pages\":\"132-145\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535193/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535193/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure and Accurate Personalized Federated Learning With Similarity-Based Model Aggregation
Personalized federated learning (PFL) combines client needs and data characteristics to train personalized models for local clients. However, the most of previous PFL schemes encountered challenges such as low model prediction accuracy and privacy leakage when applied to practical datasets. Besides, the existing privacy protection methods fail to achieve satisfactory results in terms of model prediction accuracy and security simultaneously. In this paper, we propose a Privacy-preserving Personalized Federated Learning under Secure Multi-party Computation (SMC-PPFL), which can preserve privacy while obtaining a local personalized model with high prediction accuracy. In SMC-PPFL, noise perturbation is utilized to protect similarity computation, and secure multi-party computation is employed for model sub-aggregations. This combination ensures that clients’ privacy is preserved, and the computed values remain unbiased without compromising security. Then, we propose a weighted sub-aggregation strategy based on the similarity of clients and introduce a regularization term in the local training to improve prediction accuracy. Finally, we evaluate the performance of SMC-PPFL on three common datasets. The experimental results show that SMC-PPFL achieves $2\%\!\sim\! 15\%$ higher prediction accuracy compared to the previous PFL schemes. Besides, the security analysis also verifies that SMC-PPFL can resist model inversion attacks and membership inference attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
2024 Reviewers List* Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Restoration-Aware Sleep Scheduling Framework in Energy Harvesting Internet of Things: A Deep Reinforcement Learning Approach Beyond Text: Detecting Image Propaganda on Online Social Networks Merged Path: Distributed Data Dissemination in Mobile Sinks Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1