创造安全的未来:材料监管是化学的可持续发展使命

Stephen A. Matlin, Sarah E. Cornell, Klaus Kümmerer, Peter G. Mahaffy and Goverdhan Mehta
{"title":"创造安全的未来:材料监管是化学的可持续发展使命","authors":"Stephen A. Matlin, Sarah E. Cornell, Klaus Kümmerer, Peter G. Mahaffy and Goverdhan Mehta","doi":"10.1039/D4SU00576G","DOIUrl":null,"url":null,"abstract":"<p >As the science of transformation of matter, chemistry provides knowledge, innovation and practice that are fundamental to the current efforts to achieve sustainability in the face of challenges that include multiple environmental crises (including pollution, climate change and biodiversity loss) and looming shortages of ‘critical’ materials. This article presents the case for chemistry and the chemical sciences adopting material stewardship as a central mission, whose aim is to transform and use the Earth's available stock of material resources in ways consistent with ensuring sustainability for people and for the physical and biological systems of the planet on which all life depends. The implications of this mission are examined, including for chemistry's contributions to extending knowledge, processes and products required for stewarding the Earth's physical and biological materials and systems. The mission includes supporting energy transitions necessary to stabilise Earth systems that are increasingly perturbed by anthropogenic effects. An overview is presented of how chemistry's mission of material stewardship interconnects with sustainability frameworks providing broad principles and goals, including the UN's Sustainable Development Goals and the Planetary Boundaries and Human Security frameworks, as well as with specific chemistry movements and orientations (including green, sustainable, circular and one-world chemistry) and enabling tools (<em>e.g.</em> systems thinking, material circularity and life cycle assessment) that provide guiding concepts, pathways and capacities for chemistry's contributions towards sustainability. The utility of the material stewardship mission is exemplified through three case studies, related to a product type, a sustainability tool, and a sustainability movement. The need is emphasised for the chemistry profession to work across disciplines to help shape policy and practice towards a sustainable future. This includes engaging with others in the processes of negotiation that shape global agreements on goals, policies and programmes that impact on sustainability. Critical ones currently in progress include the efforts to find mechanisms to reduce greenhouse gas emissions to limit global warming to the UN's target of not more than 1.5 °C above pre-industrial levels by 2050, and to establish a UN Science-Policy Panel on chemicals.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 804-821"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00576g?page=search","citationCount":"0","resultStr":"{\"title\":\"Inventing a secure future: material stewardship as chemistry's mission for sustainability\",\"authors\":\"Stephen A. Matlin, Sarah E. Cornell, Klaus Kümmerer, Peter G. Mahaffy and Goverdhan Mehta\",\"doi\":\"10.1039/D4SU00576G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As the science of transformation of matter, chemistry provides knowledge, innovation and practice that are fundamental to the current efforts to achieve sustainability in the face of challenges that include multiple environmental crises (including pollution, climate change and biodiversity loss) and looming shortages of ‘critical’ materials. This article presents the case for chemistry and the chemical sciences adopting material stewardship as a central mission, whose aim is to transform and use the Earth's available stock of material resources in ways consistent with ensuring sustainability for people and for the physical and biological systems of the planet on which all life depends. The implications of this mission are examined, including for chemistry's contributions to extending knowledge, processes and products required for stewarding the Earth's physical and biological materials and systems. The mission includes supporting energy transitions necessary to stabilise Earth systems that are increasingly perturbed by anthropogenic effects. An overview is presented of how chemistry's mission of material stewardship interconnects with sustainability frameworks providing broad principles and goals, including the UN's Sustainable Development Goals and the Planetary Boundaries and Human Security frameworks, as well as with specific chemistry movements and orientations (including green, sustainable, circular and one-world chemistry) and enabling tools (<em>e.g.</em> systems thinking, material circularity and life cycle assessment) that provide guiding concepts, pathways and capacities for chemistry's contributions towards sustainability. The utility of the material stewardship mission is exemplified through three case studies, related to a product type, a sustainability tool, and a sustainability movement. The need is emphasised for the chemistry profession to work across disciplines to help shape policy and practice towards a sustainable future. This includes engaging with others in the processes of negotiation that shape global agreements on goals, policies and programmes that impact on sustainability. Critical ones currently in progress include the efforts to find mechanisms to reduce greenhouse gas emissions to limit global warming to the UN's target of not more than 1.5 °C above pre-industrial levels by 2050, and to establish a UN Science-Policy Panel on chemicals.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 2\",\"pages\":\" 804-821\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00576g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00576g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00576g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inventing a secure future: material stewardship as chemistry's mission for sustainability

As the science of transformation of matter, chemistry provides knowledge, innovation and practice that are fundamental to the current efforts to achieve sustainability in the face of challenges that include multiple environmental crises (including pollution, climate change and biodiversity loss) and looming shortages of ‘critical’ materials. This article presents the case for chemistry and the chemical sciences adopting material stewardship as a central mission, whose aim is to transform and use the Earth's available stock of material resources in ways consistent with ensuring sustainability for people and for the physical and biological systems of the planet on which all life depends. The implications of this mission are examined, including for chemistry's contributions to extending knowledge, processes and products required for stewarding the Earth's physical and biological materials and systems. The mission includes supporting energy transitions necessary to stabilise Earth systems that are increasingly perturbed by anthropogenic effects. An overview is presented of how chemistry's mission of material stewardship interconnects with sustainability frameworks providing broad principles and goals, including the UN's Sustainable Development Goals and the Planetary Boundaries and Human Security frameworks, as well as with specific chemistry movements and orientations (including green, sustainable, circular and one-world chemistry) and enabling tools (e.g. systems thinking, material circularity and life cycle assessment) that provide guiding concepts, pathways and capacities for chemistry's contributions towards sustainability. The utility of the material stewardship mission is exemplified through three case studies, related to a product type, a sustainability tool, and a sustainability movement. The need is emphasised for the chemistry profession to work across disciplines to help shape policy and practice towards a sustainable future. This includes engaging with others in the processes of negotiation that shape global agreements on goals, policies and programmes that impact on sustainability. Critical ones currently in progress include the efforts to find mechanisms to reduce greenhouse gas emissions to limit global warming to the UN's target of not more than 1.5 °C above pre-industrial levels by 2050, and to establish a UN Science-Policy Panel on chemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1